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Abstract

We briefly describe a project devoted to the implementation of the software
package MOLGEN-COMB for the simulation of combinatorial chemistry and
the optimization of its experiments.

1 Combinatorial chemistry with central molecule
and building blocks

To begin with we recall from [3] our mathematical model of a combinatorial library
obtained from a central molecule (for example, the cubane) and building blocks (for
example, amino acids): Attachments of building blocks to the active sites of the

central molecule are considered as elements of the set of mappings
Y¥:={f: X =Y},

where X is the set of active sites, while Y denotes the set of building blocks. Attach-
ments which describe essentially the same molecules form orbits under the action of

G, the symmetry group of the central molecule, on YX :

GxYX =YX (g, f) = fog™.
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The orbit of the attachment f was indicated by
G(f)={fog "' |g€G},
and we denoted the set of all the orbits of G on YX as follows:
G\Y™*.

The Lemma of Cauchy-Frobenius gives the number of orbits in terms of numbers of
fixed points. If we apply it to the action of G on YX we obtain that

G\Y*¥| = Z [yl

gEG

where |(g)\ X | denotes the number of orbits of the group (g), generated by the element
g €G.
This formula allows to evaluate the size of a combinatorial library obtained
from a central molecule by attaching building blocks.
In the cubane case the symmetry group is — in mathematical terms — the alternating
group Ay, consisting of 12 proper rotations. Hence, the Lemma of Cauchy-Frobenius
gives the number of essentially different attachments in terms of the number |Y| of

admissible building blocks (=amino acids):
1
X _ L (jy4 V2
ANYY] = 5 (JY[*+ 11V,

In the case of |Y| = 19 we obtain, for example, that there exist exactly 11 191
essentially different attachments.

The next step is a refined evaluation of the library using weighted enumeration, which
means, for example, that we can evaluate the number of elements in the library which
contain given building blocks with prescribed multiplicities.

Pélya’s Theorem gives the numbers of orbits of G on YX by weight (=multiplicities

of prescribed building blocks) in terms of the cycle index polynomial:
Cyc(G, X) > H A
|G| geGi=1

where [(¢g)\;X| denotes the number of orbits of length i of (g), or, in other words,

the number of i-cycles of g on X.



The number of orbits of G on Y* which consist of mappings f that take the value y €

Y with multiplicity b, is the coefficient of the monomial [, cy y% in the polynomial

LTI o,

geG i=1 yeYy

which arises from the cycle index by replacing the indeterminate x; by the i-the power
sum symmetric function -, yt.

There exists an interesting description (due to H. O. Foulkes) of the generating func-
tions which Pélya obtained, in terms of Schur functions {a}, which are generating
functions for the irreducible characters (* of the irreducible representations [a] of the

symmetric group,
RS

> ¢(m) ZHIZy )il

TESx

IX !
In terms of the multiplicities (IG 1 Sx, [e]) of these [¢] in the representation /G 1 Sx
of Sx, which is induced from the identity representation of the symmetry group G,

we have
|X]

|G| S I 9@ = 3 (IG 1 5x, [a)) - {a}.

9eG i=1 yeY ak|X|
(a = (@1, 9, .. .) denotes the proper partition that characterizes the corresponding
irreducible representation, i.e. ¢o; > o441, @; € N and >, o; = | X|, the degree of the
symmetric group in question.) The cubane case is trivial, we obtain as generating

function the sum of Schur functions

{1X1} + {171,

as always when the symmetry group of X is the alternating group Ax. The summands
correspond to the one-rowed and to the one-column Young diagram, as it is well known
from the representation theory of the symmetric group.

Enumeration gives a numeric estimate of what we can expect in the combinatorial
library. What we really want is, of course, to get the elements of the library itself,
i.e. the structural formulae of these molecules. In order to attack this problem we
note that the desired combinatorial library of molecules is obtained as a

transversal, i.e. a complete set of representatives of this set of orbits.



It was mentioned in [3] that Ruch, Hésselbarth and Richter have shown (see [5],[6]),

how these orbits are bijectively related to double cosets: The set of orbits
G\;Y*¥

consisting of mappings with the same weight (or content, as Pélya called it) as f, i.e.
which take the values y € Y with the multiplicities | f~!(y)| (for example in the case
of the cubane and the amino acids, |f~!(y)| means the number of active sites, where
the amino acid y is attached), can be mapped bijectively onto a set of double cosets
as follows:

G\sY* — G\Sx/(Sx)s: G(f o) — Gr(Sx);,

where (Sx) denotes the stabilizer of f in the symmetric group Sx. In fact, the
stabilizer of f in the symmetric group Sx is the direct sum (or direct product, if you
prefer) of the symmetric groups Sg-1(,) on the inverse images of the values which f
takes:

(Sx)f = ®yS-1(y)-
for each element 7 of the symmetrix group Sx on X.
The crucial point is now that we can obtain a transversal of this set of
orbits G\ ;Y* by constructing a transversal of this set of double cosets and
then retranslating its elements into attachments.
Methods for obtaining transversals of sets of double cosets were described, and we
should like to mention that using MOLGEN-COMB, a generator software for this
purpose which was developed recently in Bayreuth, can generate the full library of
molecules with central cubane and building blocks taken from the set of 19 amino
acids, within ten minutes on a work station.
Hence, in order to summarize part I of this paper, we have shown that enumeration
under finite group action can cover famous examples of combinatorial chemistry. The
method used is Pélya’s Ansatz to choose suitable sets X, Y and a finite group G acting
on X. The examination of the induced action of G on the set of mappings Y allows
to evaluate the total number of elements in a combinatorial library arising from a
core with the set X as set of active sites by attaching elements of a set ¥ of building

blocks, and with respect to the symmetry group G of X. This number is obtained



by an easy application of the Cauchy-Frobenius Lemma. Moreover we can obtain
(by an application of Pélya’s Theorem) a generating function for the elements of the
library, which enumerates these elements by weight. Finally we can even construct

the library using the double coset reformulation of the orbits.

2 The virtual library

Here is an optical description how the combinatorial library arising from cubane and
the attachment of amino acids is obtained by an application of MOLGEN-COMB.
We should like to describe it in detail since this shows where problems are. To begin

with, the user enters the central molecule:

core structure: 1EMIGUI_MOTIF/BIB/cuban Browse| Moled|
Cancel|

Then the building blocks are put in,

. Fragments 8 =] [E3
amino_prolin depth: min: |1 3 max:|100 2
amino_serin
amino_threonin

s . : Al A
amino_tryptophan multipl.: min: |0 y Mmax: |4 5
amino_tyrosin
Browse| Moled | Delete |

Ok | Cancell

and the admissible reaction(s):



Reactionsz

C(C1)=0 + CCNOCC0)=0 => reac_8.2.

| |

= |~

depth: min:|1 ﬂ max: | 100 il'

multipl.: min: 0 5 max: 100 %

Browse| Moled| ReacEd| Delete|

Ok | Cancel |

Of course, the central molecule will be shown:

... MOLED: cuban

File Edit Options Programs Help
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as well as the building blocks:



MOLED: amino_valin BmEE

Bsons | ae=sae] |2
@
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and the reaction, in graphical terms,

REACTION-ED: C[CI)=0 and C[N)C[0)=0 M[=] E3

CEERC R ECEIr ]
o
(]

Afterwards we select the admissible building blocks



MOLCOMB: carell_cuban O[]
File Options BRestrictions Help |

=N R ¢ i
number of atoms: min:[2 4 max: 200
number of reactions: min: |4 ﬂ max: | 4 ﬂ

Filter aromatic doublettes

Core: cuban

Fragments:
[0:4] x amino_alanin
[0:4] x amino_arginin
[0:4] x amino_asparagin
[0:4] x amino_asparaginacid
[0:4] x amino_cystein
[0:4] x amino_glutamin
[0:4] x amino_glutaminacid
[0:4] x amino_glycin
[0:4] x amino_histidin
[0:4] x amino_isoleucin
[0:4] x amino_leucin
[0:4] x amino_lysin
[0:4] x amino_methionin
[0:4] x amino_phenylalanin
[0:4] x amino_prolin
[0:4] x amino_serin
[0:4] x amino_threonin
[0:4] x amino_tryptophan
[0:4] x amino_tyrosin
[0:4] x amino_valin

Possible reaction types:
[0:1000] x £ C(C1)=0 + C(NIC{03=0 => reac_8.2.1 }

save: 3000 = comp.: 100000 x

Start Stop 0in0.0s

and start the generator which evaluates the combinatorial library in a few minutes

Info | x|

Computation completed !!
Final result of the generator:

@ constructed isomers: 8855
stored isomers : 3000
cpu-time in sec. : 601.40

OK | Result... |

Sequences of elements can be shown:



.. molview: kombgen. out

F|Ie Options Help

&2

as well as single elements in a 3D-placement (using the MM2 energy model):

.. molview: kombgen.out

File Options Help

B

Although we nicely generated the library and stored its elements, there is a serious

1=

problem, since the generator gives 8 855 structural formula, while we
obtained 11 191 elements by the Lemma of Cauchy-Frobenius! What has
happened and what can be done? To begin with, let us list the basic facts which

lead to this smaller number of elements in the desired library:

e The generator — in its present form, an improved version is under construction

— has as input the structural formula of the cubane, i.e. a connected multigraph.



Hence, all what it can do (at present) is to evaluate the automorphism group
of that graph, which is, in mathematical terms, the hyperoctahedral group, a
wreath product 52153, a group of order 48. The generator restricts the action
of this group to the set of active sites, and it is clear that this amounts to an

action of the symmetric group S;.

e But, as it was already mentioned, the symmetry group which we have to take
into account is the alternating group A4, since we want to consider proper ro-
tations only. And we should carefully note that this is a decision, the reason
of which is a chemical argument. So what we usually need and, as we said,
a corresponding generator is under construction, is a chance to recognize the
symmetry group of the conformation which is a (possibly proper) subgroup of

the automorphism group of the underlying graph.

e This group which may be a proper subgroup of the permutation group induced
on the active sites by the automorphism group of the underlying graph, must
be the symmetry group of the conformation of the central molecule. And this is
a further, and very serious problem, since there are usually no conformations at
hand, nor are there classes of conformations available (like in the cyclohexane

case, where we have the chair, the bath tub and the twistor).

e What we can do, of course, is to evaluate a conformation using, say, an energy
model like the MM2-model, an optimization and atomic tables for the bond
lengths and angles. But this does not solve the problem either, at least it does
not solve it directly. The reason is that whenever we do such a calculation,
starting from a random distribution of the atoms in space (which makes sense
for small molecules in order to at least have a chance to find the global energy
minimum), we obtain a result that is, first of all, different from the foregoing,
and secondly, is an inexact cube, for example, in the cubane case. And so we are
in trouble when we want to evaluate its symmetry group, since we now enter,

in a certain sense, fuzzy mathematics.

e Finally, even if we have solved the problems just mentioned, we get into prob-



lems since there is no standard data structure that allows routinely to store
conformations and to distinguish, say, the two elements of an enantiomeric pair
of molecules. So we finally run into a very serious problem of chemical nomen-

clature.

All in all, we have met a bunch of serious problems that have to be solved in the
near future. All what we can say is, that we are working on it. For oriented planar
graphs see [4], further ideas are presented in [1]. Of course, we can use several tricks,
for example to add information about chirality, and to find out this way that there
are in fact 11 191 different molecules in the library, but such tricks should be replaced
by finding a normal form for the 3D placements. Before this is solved we have a

generator of molecular libraries “only” on the topological level.

3 The virtual library and a real sublibrary

Nevertheless we are now going to continue by describing the use of such wvirtual (i.e.
mathematically generated) combinatorial libraries in order to design optimal combi-
natorial experiments.

Suppose we are given a combinatorial library in the sense that we have generated
each of its elements and tabulated them in a separate file. We call this library the
wvirtual library, in order to distinguish it from its counterpart, the real library. This

real library is supposed to be a set molecules for which we know the following:
e Each element of the real library is contained in the virtual library,

e and for each element of the real library we have certain parameter values which

allow us to distinguish the good from the bad elements of the real library.

Usually the real library contains a few, maybe a few hundred molecules, while the
virtual library quite often contains several thousand molecules. Therefore it is an
important and interesting question to obtain a decent prediction which
of the further elements in the virtual library might be good as well. The
purpose is to design an experiment of combinatorial chemistry that synthesizes the

possibly good elements of the virtual library and not too many others, for economic



reasons, of course. The crucial point is that this procedure confronts us with the
serious problems that have been listed above, and the solution of which is a major

task for the future!

The first question that is natural to be asked and which is important to get an
answer to, is “which is which”. We ask which of the elements in the virtual
library correspond to the elements of the real library. In mathematical terms,

we want to embed the real library into the virtual one.

Of course, there are cases in which we can easily get an answer, for example, if
both the elements in the virtual and the real library are given by a uniquely defined
sequence of reactions, by a synthesis path, as we may call it. But it is easy to see that
this will already fail in the above cubane case.

We might also try to get the CAS numbers or [UPAC names for the elements in the
real and in the virtual library, but this is, first of all, cumbersome and very costly,
and, secondly, it will mostly fail, since only part of the virtual library will be found
in CAS.

This idea of getting CAS numbers or IUPAC names shows that we are suddenly and
deeply involved with problems of chemical registration. So let us talk about what can
be done and how it should be done.

To begin with, we should note that it clearly should be done automatically. This
means that we need a data structure which is uniquely defined and for which there
exists a canonical form. Hence neither CAS numbers (which we mostly cannot re-
translate into structural formulae) nor IUPAC names (which are not unique) are
allowed.

Moreover, the standard way of describing a molecule by its connection table (for
which a canonic form can be evaluated, see the Computer Corner of the present issue
of MATCH) does not suffice as we can see in our cubane example: There are chiral
situations, enantiomeric pairs of molecules that have the same connection table! It
should be emphasized that this is not a mathematical problem, since the mathematical
generator does generate both elements of the enantiomeric pair, but when it comes
to storing the elements of a pair by a connection table we loose information, the

connection tables (in canonical form) are both equal.



4 The optimization of an experiment

Assume that we are given a virtual library and a real sublibrary. Recall that we
assume to know which of the elements in the real library are “good” molecules for a
particular purpose. The aim is to find out which of the elements in the virtual library
might be good molecules, too, in order to design an experiment of combinatorial
chemistry which generates a set of molecules containing good ones with a higher
percentage than the total virtual library.

A standard method for doing this is, of course, data mining via regression analysis,
using molecular descriptors.

The good molecules of the real library are usually classified by the values of certain
parameters which distinguish them from the “bad” ones.

Moreover, being aware of their structural formula, we can calculate molecular de-
scriptors for all molecules both in the real and in the virtual library. For example,
we can evaluate topological indices. Other descriptors, let us call them geometrical
indices, are based on a theoretical conformation. Theoretical means, the conforma-
tion is obtained from the structure formula by some algorithm, for example an energy
optimization using the MM2 model.

There exists a huge amount of different descriptors already used in several cases
with some kind of success. We provide about 100 topological indices and about 25
geometrical descriptors using a conformation and results on atom charges (provided,
for a particular case, by the Gasteiger group in Erlangen). An individual selection of
indices is possible. Furthermore we want to provide an interface to include additional
descriptors computed by external programs. For example, we can include indices
produced by the Cluj-program ([2]), which is able to calculate about 16000 different
indices.

Now, in order to do data mining, we look for relations between the (measured) pa-
rameter values of the elements in the real library and the (calculated) descriptors
of these molecules. The difference to standard methods of statistical data analysis
is, that we don’t have any preassumptions on the kind of relations. We don’t even

know, if there are any relations at all. As there is nearly no expert knowledge about



relationships between any kind of structure based descriptors and physical, chemical
or biological properties or activities, we want to implement a software package which
does an automatic data mining process in order to get as much statistical information
out of the real library, as possible.

There are several statistical methods available for this purpose. Well known examples
are linear regression analysis, regression trees, neuronal networks.

As a first step, we use regression trees, which are quite fast, can handle a huge
amount of variables and are especially qualified for nonlinear relations. Certainly
other methods should be used, too, say in parallel, and the best results should be
picked.

After the step of data mining, we will get a set of selected virtual descriptors and some
kind of prediction of the parameter values based on these descriptors. In addition we
should get an idea of the quality of this prediction (in order to be able to compare it
with other methods of data mining).

Once we have a set of virtual descriptors together with a prediction, we can compute
the descriptors on the virtual library, and then predict the parameter values, i.e. we
get virtual parameter values on the virtual library. Using these virtual parameters, we
can predict, which molecules might be good, and so we can rank the virtual library
according to the predicted quality of the molecules. Thus the experimental chemist has
the chance to synthesize additional molecules, with a higher probability of being good
substances. Moreover, at least in principle, this should give us a chance to understand

why certain molecules are good in a certain sense or for a certain purpose.
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