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Abstract 

Artificial neural networks are capable of predicting the 13C chemical shifts of organic 

molecules nearly as fast as incremental methods while maintaining the accuracy of database 

methods. In this article, we apply a recently developed neural network (Meiler et. al., J. 

Chem. Inf. Comput. Sci. 2000, 40, 1169-1176), to the screening of  large sets of molecules 

obtained by structure generators in the process of automated structure elucidation. 

Specifically, we apply the network to sets of structures generated by MOLGEN (Benecke et. al., 

Anal. Chim. Acta 1995, 314, 141-147) for ten randomly selected molecules of less than 13 

non-hydrogen atoms. The computed 13C NMR spectra are compared to the experimental 

spectrum; in all cases, the computed spectrum belonging to the example molecule yields a 

significantly smaller deviation to the experimental data then all other predicted spectra. This 

result suggests that the approach is suitable for automated structure prediction for organic 

molecules with up to 12 non-hydrogen atoms. 
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Introduction  

Structure elucidation is one of the basic needs in organic chemistry after a substance 

is synthesized or isolated. A large variety of powerful methods such as multidimensional high 

resolution NMR spectroscopy or mass spectroscopy is available for this purpose. Databases 

contain spectra of hundreds of thousands of organic compounds and allow a fast comparison 

of a new spectrum with all existing spectra in order to find similarities or identities. However, 

the number of substances to be analyzed is also increasing rapidly, which creates a need for 

partially or fully automated approaches to structure elucidation. 

During the search for pharmaceutical drugs or other biological agents more and more 

substances are synthesized. Modern techniques, combinatorial methods and fully automated 

synthesis further increase the number of samples. Also the measurement of analytical data can 

be done in a highly automated manner, so that the manpower-intensive structure elucidation 

becomes the bottleneck of the �structure elucidation pipeline�.  

Using NMR spectroscopy, one way of finding the constitution of a compound is to 

suggest a structure and to test whether this suggestion is compatible with all the data derived 

from the NMR spectra, including chemical shift, multiplicity and connectivity information 

from Heteronuclear Single-Quantum Coherence (HSQC) spectra. Usually this process has to 

be repeated until a suggested constitution is compatible with every experiment and ideally all 

other possibilities should have been excluded. However, the exclusion of all other 

theoretically possible structures is a challenging task since it includes the discussion of every 

single possible constitution for a given molecular formula. The number of possible 

constitutions becomes huge already for substances with about twelve non-hydrogen atoms. 

Although the chemist can use his knowledge to exclude large parts of the structural space in a 

first step (for example all substances containing a carbonyl if there is no 13C chemical shift 
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higher than 150 ppm), for more complex cases it quickly becomes impossible to survey the 

space of all possible constitutions.  

At this point a structure generator is needed to generate all structures that fulfill a 

certain set of boundary conditions (e.g. molecular formula and optional information on the H-

distribution, hybridization and substructures (MOLGEN)(1) or molecular formula and 

connectivity information from NMR spectra (COCON)(2)). The advantage of having all 

possible structures at hand comes often along with the disadvantage of a large set of data that 

cannot be analyzed manually. 

13C NMR chemical shift data are especially sensitive to the constitution of an organic 

compound, since the chemical environment of every single carbon atom in the molecule is 

described by such a number. Since carbon is the most common non-hydrogen atom in organic 

compounds and is involved in intermolecular interactions only to a limited amount, the 13C 

NMR chemical shift represents almost pure, noise-free connectivity information. If it is 

possible to predict the carbon chemical shift from the constitution of a molecule quickly and 

accurately, an automated ranking of the structure generator results becomes possible. 

Consequently the prediction of 13C chemical shifts plays an important role in structure 

elucidation. Two basically opposite approaches are ab initio and empirical calculations.  

Ab initio calculations compute magnetic properties from first principles, as the mixed 

second derivative of the energy with respect to an applied magnetic field and the nuclear 

magnetic moment [e.g., Schindler and Kutzelnigg(3)]. Starting from a three-dimensional 

structure of the compound under consideration highly accurate results can be produced for the 

entire molecular system. However, the necessity to predetermine both the constitution and the 

correct configuration/conformation restricts the applicability of this calculation method. The 

correct three-dimensional structure is often unknown and multiple conformations have to be 

taken into account for small and flexible molecules, particularly. Extensive optimization of 
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the spatial structure on a high level and/or consideration of multiple conformations render 

such calculations very time-consuming and expensive. On the other hand, the resulting 

chemical shift values are not affected by previous experimental results and are thus more 

impartial. Especially for strained  and other unusual systems, chemical shift values are often 

predicted more accurately by using ab initio calculations.  

By contrast empirical approaches rely on knowledge of chemical shifts for a large set 

of known molecular structures. The first publications introducing the approach known as 

�increment method� were published by Grant and Paul already in 1964(4), by Lindeman and 

Adams in 1971(5) and by Clerc and Sommerauer in 1977(6). The advantage of the method is 

its simplicity that allows the transfer to nearly every class of substances and a straightforward 

calculation of the shift values even by hand. These methods are still under development (7) 

and can be applied to  all ordinary organic substances. However, the limitation of this simple 

approach is that all interactions between several substituents of a carbon atom are ignored. 

Therefore large deviations between experimental and predicted chemical shift values are often 

obtained for highly substituted fragments.  

Soon after computers became available to the general public, 13C NMR spectra were 

stored in databases (e. g. SPECINFO(8) or CSEARCH(9)) to serve for extensive data analysis. 

Bremser et. al.(10) introduced a hierarchically ordered spherical description of environment 

(HOSE) code to describe the constitutional environment of a carbon atom. The longer the 

code the more spheres are described. Lists of such descriptions covering the first up to 5 

spheres around a carbon atom were stored together with the corresponding chemical shift 

information. Now for every molecule prediction of 13C NMR chemical shift is possible by 

calculating the HOSE code for each carbon atom and a subsequent search through the 

database for similar codes. This method is known to provide a very exact prediction of the 

carbon chemical shift if the database contains similar HOSE codes. One obvious advantage of 
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HOSE code prediction is the reference to all original data enabling a direct check of the 

assignment. Disadvantages of the method are a relatively slow prediction compared to 

increment methods, the necessity of access to the large database and an enhanced uncertainty 

for structures outside the space covered by the database.  

With the introduction of artificial neural networks to chemistry (11) in recent years, 

their potential for 13C NMR chemical shift prediction was evaluated. At first, similar to 

increments they were applied to restricted classes of substances (12-18); later, approaches 

were introduced that cover the entire space of organic compounds(9,19,20). Artificial neural 

networks combine the advantages of increments and HOSE code prediction: They are fast 

(once the networks are trained), precise (since interactions between substituents are 

considered), independent from direct access to a database, and (compared to HOSE code and 

increment methods) especially accurate in estimating chemical shifts of newly synthesized 

molecules that are badly represented in the database. 

We discuss in this paper an application of our previously introduced neural network 

13C NMR chemical shift prediction (19) as an efficient filter for a structure generator. The 

program ANALYZE(21) provides the comparison of a given experimental NMR spectrum with 

neural network predicted NMR spectra for a set of given structures and ranks the structures 

with respect to the similarity between experimental and computed data.  

Recently we combined ANALYZE with COCON showing that it is possible to extract a 

small amount (~0.1%) of probable constitutions out of a complete set of possible constitutions 

for proton-poor compounds with up to 25 non-hydrogen atoms(21). Moreover, it was possible 

to use the quality measure of the similarity between an experimental and a computed 13C 

NMR spectrum for a suggested constitution as fitness function of a genetic algorithm (GENIUS 

(22)). This genetic algorithm is taking the role of a structure generator by creating populations 

of constitutions that evolve under the selection pressure of the fitness function. Therefore the 
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constitution is optimized to fulfil the experimental 13C NMR spectrum. This algorithm was 

proven to solve the constitution of molecules with up to 20 non-hydrogen atoms 

automatically.  

However, COCON relies on connectivity information, which implies the record of 

more experimental data in time-consuming higher dimensional NMR experiments. GENIUS 

generates only a part of the complete constitutional space and may therefore miss the correct 

solution. For small organic molecules of 12 non-hydrogen atoms, the calculation of all 

possible constitutions is at the limit of computational power today.  

MOLGEN is a powerful structure generator that computes, starting from a molecular 

formula and optional further conditions all possible constitutions rapidly and free of 

redundancy (1,23,24). By applying the 13C NMR chemical shift filter on complete sets of 

MOLGEN structures, we want to address three questions in this paper: 

• How efficient is the 13C NMR chemical shift comparison applied to sets 

of structures that cover the structure space of one molecular formula completely? 

• Up to which size of molecules does this combination yield a practical 

and reliable method for automated structure elucidation? 

• How can one early recognize such parts of the structure space that need 

not to be generated since they do not contain the correct solution?  

The latter point is of special interest for applying this method to compounds of a 

more realistic size at the scale of today's organic synthesis. 

 

Methods  

(MOLGEN:) This generator of structural formulae knows two generation methods: 

orderly and restricted generation. While restricted generation is able to process various 
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structural restrictions efficiently, orderly generation is recommended, if only the molecular 

formula is given, or in addition several restrictions such as hybridizations or a hydrogen 

distribution. As already mentioned, we have input only the molecular formula and therefore 

orderly generation was used.  

MOLGEN calculates chemical constitutions as connectivity matrices. Filling the n x n 

connectivity matrix in all possible ways according to the given molecular formula with n 

atoms is no serious algorithmic problem, but is very time-consuming for increasing n. The 

second problem is to avoid redundancy in the output, the so-called isomorphism problem; i.e., 

we must decide which connectivity matrices represent identical constitutions. Naively, this 

problem has time complexity O(n!) , because in the worst case one would have to apply all 

the n! permutations of the symmetric group in order to decide whether two connectivity 

matrices are isomorphic. With the aid of combinatorics, algebra and group theory, these 

problems are cut down immensely. 

Mathematically we identify constitutions with unlabeled molecular graphs. A 

molecular graph is an undirected multigraph together with a coloring of the vertices, which 

represents the atoms' chemical elements. Unlabeled molecular graphs on n vertices are the 

orbits of the group action of the symmetric group Sn on the labeled molecular graphs on n 

vertices. In mathematical terms the problem is to find a full (but non-redundant) set of orbit 

representatives of this group action. A very efficient method to solve this problem is Read's 

orderly generation (25), in which structures are enlarged successively by adding edges. A 

linear order is introduced on the objects and the minimal structures in each orbit are defined to 

be the canonical orbit representatives. One can prove that minimal orbit representatives arise 

from stepwise enlargement of already minimal predecessors. Therefore, whenever a non-

minimal graph is reached, we do not need to insert further edges, because this will not lead to 

a minimal orbit representative. This technique already reduces the computational effort 
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enormously. Further details about the algorithm can be found in the theses of Grund (26) and 

Grüner (27).  

(ANALYZE:) The neural network approach for predicting 13C chemical shifts is 

described in detail elsewhere (19) and therefore will be only summarized briefly here. From 

the SPECINFO database ~100 000 organic molecules (containing exclusively H, C, N, O, S, P, 

halogens) with known 13C NMR spectrum were selected. Out of this set of molecules a 

training set (95%), a monitoring set (2%) and an independent set (3%) of molecules were 

randomly picked.  

The constitutional environment of every single carbon atom was described using up 

to 1,696 numerical descriptors: These parameters encode every single substituent of the 

carbon atom of interest within the first three spheres (13 atoms x 8 properties = 104 

parameters). For all further spheres, only the number of atoms that belong to a special atom 

type (32 atom types were previously defined using element number, period, hybridization and 

number of bond hydrogen atoms (19)) is determined whereas all atoms that belong to sphere 

eight an higher are combined in one sum sphere. This procedure results in 160 (= 32 atom 

types x 5 spheres) additional input parameters which are incorporated twice, once counting all 

atoms and a second time only considering atoms that belong to a conjugated π electronical 

system with the carbon atom of interest. This leads to 424 (= 104 + 160 + 160) parameters for 

a single subtituent and therefore to 1,696 (= 4 x 424) parameters for a quaternary carbon 

atom. Nine different neural networks were trained to predict the chemical shift for the nine 

defined carbon atom types ( 〉C〈, 〉CH−, −CH2−, −CH3, =C〈, =CH− / =CH2, ≡C− / ≡CH / =C=, 

)〉C−, )〉CH ). Standard three layer feed forward neural networks containing up to 1,696 input 

units, 32 hidden neurons and one output (up to 54,337 weights) were trained using the back-

propagation algorithm with a total of ~1,300,000 carbon atom environments out of the 
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training set of data until the RMSD of the monitoring set of data was minimized. For the 

independent set of data, a standard deviation of 2.4 ppm and a mean deviation of 1.6 ppm was 

obtained. 

For the present investigation 10 molecules were randomly selected out of the 

independent set of data that contain 9, 10, 11, and 12 non-hydrogen atoms. Using the program 

MOLGEN (1,23) all possible constitutions for these molecules were generated using only the 

molecular formula as input. For every compound in each of the resulting sets of data the 13C 

NMR chemical shift spectrum was computed using the neural network approach and 

compared with the experimental data. The RMSD (root mean square deviation) of the 

computed and the experimental chemical shift values was calculated after the list of carbon 

atoms was sorted with respect to an increasing shift value for the experimental data as well as 

for the computed ones. Finally all structures were ranked starting with the lowest RMSD 

value.  

Table 1 shows the selected compounds, gives some detail of the MOLGEN and 

ANALYZE runs and presents their results. The structure generation with MOLGEN 3.5 was done 

on a 800MHz Pentium III PC under Windows NT. Using orderly generation, the size of main 

memory has no influence on the performance. The ANALYZE calculations were performed on 

12 PC equipped with two 1GHz Pentium III processors with 1GB main memory running in a 

cluster under Linux. The computation time for ANALYZE given in Table 1 includes reading 

and writing as well as the additional data handling. The time necessary for the computation of 

the chemical shift alone � once the molecule is read � is about five-fold faster.



Table 1: Molecular and constitutional formula, computational aspects, and results obtained for the ten example compounds 

Compound Computation Shift comparison 

Nr Name Mole- 
cular  

formula 

Constitu- 
tional  

formula 

Number 
 of 

generated 
structures

Time 
 

MOLGEN 
(s) 

Time 
 

ANALYZE
(s) 

Best/ 
correct 
RMSD 
(ppm) 

2nd 
best  

RMSD
(ppm) 

Worst 
 

RMSD
(ppm) 

Distribution of 13C NMR chemical  
shift RMSD values  

 
(ppm) 

1 Methoxyethyl 
acrylate 

C6H10O3 O

O
O

23 838 >1 412 0.52 1.94 89.51

0

500

1000

0 32 64 96 128
 

2 Heptane-1,7-diol 

C7H16O2 

OH

OH

463 >>1 6 1.00 3.39 21.17

0

20

40

60

0 32 64 96 128
 

3 2-Chloro-6-
methoxypyrimidine 

C5H5N2OCl 

N

N

Cl O

447 891 22 6 291 0.97 1.30 129.3

0

5000

10000

0 32 64 96 128
 

 



Table 1 (continued): Molecular and constitutional formula, computational aspects, and results obtained for the ten example compounds 

Compound Computation Shift comparison 

Nr Name Mole- 
cular  

formula 

Constitu- 
tional  

formula 

Number 
 of 

generated 
structures

Time 
 

MOLGEN 
(s) 

Time 
 

ANALYZE
(s) 

Best/ 
correct 
RMSD 
(ppm) 

2nd 
best  

RMSD
(ppm) 

Worst 
 

RMSD
(ppm) 

Distribution of 13C NMR chemical  
shift RMSD values  

 
(ppm) 

4 N-Allyl-N'-
ethylthiourea 

C6H12N2S  
C6H14N2S 

C6H16N2S 

N
H

N
H

S

 

709 259 41 8 213 0.70 1.65 93.50

0
5000

10000
15000
20000

0 32 64 96 128
 

5 Methyl 2-
chlorohexanoate 

C7H13O2Cl 

O

O

Cl

27 575 >1 589 0.75 3.56 46.11

0
500

1000
1500
2000

0 32 64 96 128
 

6 3-Methylglutaric 
acid 

C6H10O4 OHO O

HO

97 394 3 1 447 1.42 4.04 82.33

0

2000

4000

6000

0 32 64 96 128
 

 



7 2,6-Dibromo-4-
fluoroaniline 

C6H4NFBr2 
H2N

Br F

Br

140 748 7 2 455 0.96 2.29 111.00

0
1000
2000
3000
4000

0 32 64 96 128
 

8 5-Bromo-2-chloro-
4-fluorotoluene 

C7H5FClBr 
Cl

F

Br 71 394 2 1 413 0.46 1.40 102.44

0
500

1000
1500
2000

0 32 64 96 128
 

9 N-isopentyl-
piperidine 

C10H21N 

N 17 884 >1 349 0.47 1.09 43.30

0
500

1000
1500
2000

0 32 64 96 128
 

10 Methyl nonanoate 

C10H20O2 

O

O

126 750 5 3 139 0.77 1.39 40.60

0
5000

10000
15000
20000

0 32 64 96 128
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Results and Discussion  

In each of the ten examples the presented method is able to rank the correct structure 

as first. Also, the difference between the first ranked and all other structural proposals is 

significant. The difference between the first and the second ranked structures lies between 

0.33 ppm and 2.81 ppm and tends to become smaller with increasing size of the set of 

molecules, as one would expect. Furthermore, we know from the application of the chemical 

shift prediction on larger molecules (COCON (2,21) and GENIUS (22)), that with an increase in 

the number of possible constitutions, solutions with a smaller deviation to the experiment than 

the true solution (false positives) will also occur. The occurrence of such false positives 

depends on the computational and the experimental error as well as on the size of the set of 

molecules. The number of non-hydrogen atoms is not necessarily a good measure for the size 

of the structural space. In the application of GENIUS 14 non-hydrogen atoms were necessary to 

obtain a false positive behavior for the first time.  

The distributions of RMSD values have a very different shape for the ten examples, 

often showing more than just one maximum. This behavior suggests that the set of 

compounds can be subdivided into several subsets. Presumably the subset that contains the 

correct structure produces also the lowest average deviation. All other subsets differ in one 

structural feature, which is likely to change the NMR spectrum for all members of this subset 

in about the same manner, and makes it impossible to agree with the experiment. However, 

the number of such subsets varies and also the separation of the subsets changes dramatically 

when looking at different examples. The fourth example shows three well-defined maxima 

but the distribution around these maxima overlap, whereas example nine shows two 

completely separated distributions; by contrast, in example seven, it is hard to recognize more 

than one maximum, although the distribution seems to include some shoulders. However, the 
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occurrence of such well defined subspaces would be a starting point for a gentle reduction of 

the structural space to be generated, if the responsible structural features can be detected prior. 

1. The first set of structures contains 23,838 members. Due to the three hetero 

atoms and the two double bond equivalents the number of possible constitutions is in the 

medium range for this molecular formula. The distribution of the RMSD to the target 

spectrum shows two maxima at around ~30 and ~50 ppm. While the first subset contains 

structures with one or two double bonds, the second subset contains structures without double 

bonds, i.e. bicyclic structures. The few candidates with deviations smaller than 6 ppm are the 

structures containing both, a C=C and a C=O bond. Figure 1a) illustrates this analysis by 

coloring the distribution plot according to the occurrence of double bonds. It is easy to see 

that structure proposals without double bonds and with only one C=C bond do not achieve 

low RMSD values at all. One C=O double bond is absolutely necessary to achieve a RMSD 

smaller than 30 ppm. An RMSD value of 6 ppm is the lower limit for structures that contain 

only one C=O bond and no additional C=C bond. Therefore it is very likely, that the correct 

constitution contains these both structural features, which might also be guessed directly from 

looking at the experimental 13C NMR spectrum. 

2. The second set of structures has 463 members, and is the smallest of the ten 

generated sets. The influence of the number of double bond equivalents on the number of 

possible constitutions is impressive. In comparison with the previous example, only one 

oxygen was replaced by a carbon atom and the two double bond equivalents were deleted. We 

will use this relatively small set to look at the structure proposals with respect to their RMSD 

value to the experimental spectrum in some more detail. Figure 1b) visualizes the distribution 

of four subsets containing all substances with a O�C�O fragment (a), with a C�O�C 

fragment (b), with a O�O fragment (c) and finally all structures that contain two OH groups 

(d). Figure 2 shows the members of each subset with the lowest and the highest RMSD value 
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Figure 1: Distribution of the 13C chemical shift RMSD values computed from the 
experimental and the neural network computed spectrum. On the x axis the RMSD value in 
ppm is given and on the y axis the number of structures with this deviation are counted. 
Diagrams a), b) and c) correspond to the examples 1, 2, and 3 in table 1 and in the text.  
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to the target spectrum. As discussed for the first example, it is again seen that the correct 

solution is clearly preferred by a low RMS value and the whole subset of structures 

containing the same structural features has a low RMSD compared to the other subsets. The 

subset containing all structures with a O�O fragment comes closest due to the comparable 

chemical shifts of the attached carbon atoms (see Figure 2c left). If there is only one carbon 

attached to the fragment, the RMSD becomes huge (Figure 2c right). All members of the 

other two subsets contain at least one carbon atom with a chemical shift value that is far too 

high. In case b) � structures that contain C�O�C � at least three carbon atoms are attached to 

an oxygen and in case a) � structures that contain O�C�O � the chemical shift of the carbon 

between the two oxygen atoms does not agree with the obtained experimental data.  

3. The third example contains four double bond equivalents due to its aromatic 

structure. The large number of hetero atoms increases the number of possible constitutions 

further. Almost 450,000 different structural formulae are compatible with this molecular 

formula. Nevertheless, the structure that belongs to the experimental NMR spectrum is still 

correctly identified. Only a small fraction of these structures (365) is aromatic, yielding 

RMSD values between 1 ppm and 38 ppm with a maximum in the distribution at 20 ppm. It is 

easy to imagine that many polycyclic structures become theoretically possible in such a 

situation, although they are unlikely to exist in reality. To investigate this behavior, we 

analyze the distribution of molecules with respect to the number of rings within every 

structure (Figure 1c). As expected, structures with more than two rings do not achieve low 

RMSD values at all, since they do not contain two C=C double bonds necessary to exhibit the 

characteristic four shift values in the olefinic/aromatic region. Structures with zero, one or two 

rings can form two C=C double bonds but need not. Therefore some members out of these 

subsets yield low RMSD values but the distribution is very broad. While the member with the 

lowest RMSD of the one ring subset is the correct structure, the lowest RMSD structure 
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Figure 2: Structures with lowest and highest RMSD to the target spectrum for the four 
subspaces generated for Example 2 (compare Figure 1b and text), respectively. The area of 
the black circles at every carbon atom position are proportional to the chemical shift 
deviation. The given identification number corresponds to the ranking in the chemical shift 
comparison.  

 

 

without rings achieves 7.5 ppm and the lowest RMSD structure with two rings achieves 3.6 

ppm. Also the number of carbon atoms that have a sp2 hybridization as indirectly applied in 

example 1 would be an efficient filter for this set of molecules. 

With these three examples the possibilities to analyze sets of molecules of different 

sizes in context with a given 13C NMR spectrum are summarized. Due to the nature of a 13C 

NMR spectrum � giving every carbon atom one chemical shift value � filters that look for 

certain fragments, the number of rings and also only the number of carbon atoms in a certain 

hybridization state are suitable criteria to investigate the generated structure space. Such 

filters might also be applied during the generation of structural spaces too large to be 
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generated completely. Since we do not want to discuss a certain problem in detail but 

introduce a general method for handling such sets of data, we describe the remaining seven 

examples only briefly. 

The next set of structures is the largest out of the ten presented here. Again the 

combination of a few hetero atoms with two double bond equivalents yields no less than 

709,259 possible structures. It was necessary to exclude ~20% of these structures since they 

contain sulfur with 3 to 6 single bonds. These atom types are not defined for the 13C chemical 

shift prediction since their occurrence in the SPECINFO database are so rare that the training of 

the corresponding neural network connections was impossible (19). As one would intuitively 

guess, the first clearly separated subset contains structures with three sp2 � carbons, the 

second largest subset can be split into structures with two or four sp2 � carbons, the 

comparably small set of structures with one sp2 � carbon comes next at ~50 ppm maximum 

and the last subset containing molecules with no sp2 � carbon atoms has its maximum at ~70 

ppm.  

The next set of molecules is comparably small (27,575 molecules) and most of its 

members are ranked with high RMSD values. The unique chemical shift of the carbonyl is 

only achieved by a few substances that really contain a carbonyl. The next local maximum in 

the distribution corresponds to structures that contain a C=C double bond preferably with at 

least one oxygen as direct substituent, and the biggest peak is the center of the subset of all 

structures not containing any sp2 � carbon atom.  

An even more efficient suppression of wrong answers is obtained for the next 

example. Only ~1% of all generated structures contain two carbonyls or have a �O�C=C�O� 

fragment and achieve therefore low RMSD values.  

The next two example sets are both very large and contain mostly non-aromatic 

structures. Again the number of sp2 � carbon atoms is a good filter. Since nitrogen can 
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participate in a double bond, in example 7 structures with six, five, four, three, two, one and 

no sp2 � carbons are possible yielding multiple heavily overlapping subsets. The average 

deviation increases with decreasing number of sp2 � carbons.  

Example 8 does not allow all integer numbers of sp2 � carbons between six and zero, 

but only the even numbers six, four, two and zero because no alternative partner for double 

bonds is available in contrast to the previous case. The overall set of possible structures 

becomes smaller, and only four subsets (instead of seven in example 7) become better 

separated as indicated by the four maxima in the distribution plot. This is also the example 

where on can observe one general rule most impressively: The four maxima caused by the 

number of sp2 � carbons are about equidistant. Starting with ~12 ppm one can add ~20 ppm to 

yield the position of the next maximum. This makes sense, since the deletion of one double 

bond yields a decrease of the two chemical shift values for the two carbon atoms, that should 

be constant in average.  

The molecular formula of example 9 contains only one nitrogen and one double bond 

equivalent. These facts limit the number of possible constitutions to be 17,884. The 

distribution shows two well separated subsets of molecules at an average RMSD of about 10 

ppm and 35 ppm. While the first subset contains all molecules with no double bonds, the 

introduction of any double bond (C=C or C=N) yields a RMSD larger than 26 ppm. Within 

these two subsets further differences can be obtained. The first subset contains tertiary, 

secondary and primary amines in this order while the second group contains two major 

subsets with either a C=C or a C=N fragment.  

The last example deals again with a larger set of data (126,750 structures), not due to 

a high number of double bond equivalents, but due to the higher number of now 12 non-

hydrogen atoms. The distribution is similar to those in examples 5 and 6 where carbonyl 

atoms were present. Only a small fraction of all proposals contain this fragment or a C=C�O 
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fragment and are therefore able to achieve a low RMSD value. All other molecules end up 

with large RMSD values in the distribution plot.  

Although in all ten examples the correct structure for the experimental spectrum was 

picked, we know that this is not the case if the structure size exceeds certain limits. The 

question is: How probable is it to find a structural proposal with a lower deviation to the 

target spectrum than the true structure itself? Since the average deviation for the chemical 

shift prediction is 1.6 ppm, such a structure must be usually below this limit. The probability 

that this happens depends not only on the number of possible structures but also on the 

position of the unknown structure in the structural space with respect to the 13C NMR 

spectrum. If the region is very dense and a lot of structures with similar spectra exist (e.g. 

examples 2, and 9) the probability rises while in regions with only few structures (e.g. 

examples 1, 5, 6, and 10) the probability is lower. The size of subspaces that contain all 

substances with similar spectra is a measure for this probability.  

Although the method is not practicable at present for most molecules with more than 

12 non-hydrogen atoms for the reason of high computation times, intelligently chosen 

boundary conditions for the structure space to be generated would circumvent this problem. 

Instead of applying the filter afterwards as done in the discussed approach, the structure space 

needs to be decreased before the start of the calculation (e.g. by defining a certain number of 

carbonyl or more generally sp2 � carbon  atoms) or ideally and more specifically on the fly. 

During the MOLGEN computation the spectrum of the generated structures is computed, 

compared with the target and the result is used to decide which regions of the structure space 

are generated (first).  

Both approaches are already used. COCON generates only a predefined part of the 

overall structure space. However, it relies on experimentally expensive two dimensional 

connectivity information. GENIUS determines the structure space to be generated on the fly 
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and has proven to be very efficient in doing this. However, since it is a genetic algorithm there 

will be never a guarantee that it really generates all members of a subspace. 

A combination of GENIUS and MOLGEN might be very efficient. GENIUS finds 

structures quickly that are similar to the correct one (searching the structure space) but it 

converges very slowly in the end of the computation (local minimization). Using the 

preliminary rapidly accessible GENIUS result as starting point a MOLGEN run could evaluate 

the size of the local minimum and compute all members to achieve the final local 

minimization. 

 

Conclusion 

It was demonstrated that the combination of computing the complete structural space 

covered by one molecular formula with a subsequent neural network based prediction of 13C 

chemical shift values allows the unambiguous determination of the correct structure to a given 

13C NMR spectrum for several example compounds with up to twelve non-hydrogen atoms. 

For all ten example molecules, the method yields a substantially lower RMSD of the 

predicted versus experimental chemical shift values for the correct structure compared with 

all other structures in the structural space. Considering the large size of the structural spaces 

with up to 700,000 structures, this result proves again that a 13C NMR spectrum is a unique 

fingerprint for organic compounds of this size. On the basis of the experimental 13C NMR 

spectrum a definition of subspaces becomes possible that have a high or a low probability to 

contain the structure to the corresponding NMR spectrum. To obtain these results, the 

structure generator MOLGEN was combined with the subsequent chemical shift prediction 

using the program ANALYZE. The overall calculation time for the examples was between 6 s 

and 8254 s. A further improvement of the method with the aim of targeting larger molecules 



 107

by lower computation times should be achievable by an earlier incorporation of the 

experimental data to decrease the structure space being generated.  
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