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Abstract

After a few remarks on the history of molecular modelling we de-
scribe certain mathematical aspects of the generation of molecular
structural formulae. The focus is on the automatic generation of struc-
tural formulae for the purpose of molecular structure elucidation and
the examination of molecular libraries. The aim is to give a review
and to point to relevant literature. We demonstrate an application
in the area of quantitative structure-property/activity relationships.
Then, we give a glance on ongoing research in the generation of 3D-
structures (stereoisomers and conformers), and finally we mention two
problems that should be solved in the near future, the possible use of
hypergraphs, and the generation of patent libraries.
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1 History

The first level in modeling a molecule is the arithmetic description using a
molecular formula, e.g.

C6H6.

This does not suffice to distinguish molecules, as already Alexander von
Humboldt (1769-1859) stated ([1]) in vol. I of his book [2], published in
1797. We quote from page 128:

– Drei Körper a, b und c können aus gleichen Quantitäten Sauer-
stoff, Wasserstoff, Kohlenstoff, Stickstoff und Metall zusammen-
gesetzt und in ihrer Natur doch unendlich verschieden seyn.

Here Humboldt states in a very clear language that chemical compounds
(Körper) may exist that contain the same quantities of oxygen, hydrogen,
carbon, nitrogen or metal while they may be different in infinitely many
aspects. On page 127 he even uses the word “Bindung” (bond).

In the 1820s Wöhler and von Liebig found that cyanic acid and fulminic
acid have the same atomic constituents, and so they proved Humboldt’s
statement to be true. In 1830 Berzelius realized this as a general phenomenon
and called it isomerism.

The existence of this phenomenon means that higher precision is needed
in distinguishing compounds, that we have to go to a higher level of accu-
racy. This second level is called the topological or constitutional level. The
topological model of organic molecules is a graph theoretic interaction model,
expressing the molecule in question in terms of a structural formula, e.g.
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This is a connected multigraph consisting of 6 nodes of valence 4, they re-
present the carbon atoms, and 6 nodes of valence 1, the hydrogen atoms.
The edges, called covalent bonds, express interactions between pairs of atoms.
(The situation is a bit more complicated in reality, since there is aromaticity.
We neglect this at the moment, but will come back to it later. In fact there
is a problem. The graph theoretic model of a molecule apparently needs to
be extended!)
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A mathematical generator of connected multigraphs with given valences
of the nodes produces altogether 217 structures with 6 nodes of valence 4
and 6 nodes of valence 1, and so there are 217 mathematically possible con-
nectivity isomers that have the molecular formula C6H6. Among these are
exactly six isomers of formula (CH)6, i.e. in these each C atom bears exactly
one H atom.

Experience has shown that there are distinct compounds (molecules) even
sharing the same connected multigraph. Therefore another (the third) level
of detail has to be considered. This is the geometric level, where phenomena
such as chirality and stereoisomerism occur. Energy models allow placements
of connected atoms in 3D space, they show e.g. that of the 217 C6H6 structures
fewer than 70 are reasonable in the sense that 3D models containing usual
bond lengths, bond angles etc. can be built, and that among these there are
exactly 7 for which two distinctly different rather than a single 3D realization
are possible: stereoisomers [3]. In 5 of these 7 cases the two stereoisomers are
mirror images of each other, the phenomenon of nonidentical mirror images
is called chirality. Hence, the problem that arises is the following:

Construct all these structural formulae, the corresponding con-
nectivity isomers as well as their stereoisomers in an efficient man-
ner free of redundance. Moreover we would like to have them in
a canonic form, so that they can be compared!

2 Solutions

The most famous paper that describes an early attack to solve these problems
is due to G. Pólya ([4],[5], see also [6]). There are, of course, various prede-
cessors, e.g. a paper by Lunn and Senior [7], who were the first to note that
group theory plays a role here, and a paper by Redfield [8] that contained
even better results. Nevertheless, Pólya’s paper is not only a masterpiece,
but it gave rise to the development of a whole theory that is nowadays called
Pólya’s Theory of Enumeration.

Pólya’s approach to the enumeration of molecules with a given molecular
formula is to subdivide the molecule in question into a skeleton and a set of
univalent substituents. It leads to the following problem:

Evaluate the set of essentially different distributions of the sub-
stituents over the sites of the skeleton, with respect to the given
symmetry group of the skeleton.
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The resulting isomers are called permutational or substitutional isomers. A
software package that calculates the number of these isomers using exactly
Pólya’s approach is due to van Almsick, Dolhaine and Hönig [9]. For example,
the 22 permutational isomers of dioxin (tetrachlorodibenzo-p-dioxin) are the
essentially different distributions of 4 hydrogen and 4 chlorine atoms over the
8 sites of the skeleton
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67
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In order to fix the symmetry group, the skeleton of dioxin is supposed to
be planar and of symmetry group D2h, which is equivalent to the Kleinian
four group V4. The way how double cosets and ladders of subgroups of the
symmetric group can be used in order to construct the 22 isomers is described,
for example, in [10].

However, in many isomer generation problems information on the skeleton
and its symmetry group is either not available or these concepts are not even
applicable, e.g. in generating the C6H6 structural formulas above. In fact,
skeleton and symmetry group are concepts on the third (geometrical) level,
and therefore, as a rule, do not play any role in the solution of problems on
the second (topological) level. Nevertheless, even in such problems Pólya’s
Theory of Enumeration is useful, since it allows to find structural formulas
as equivalence classes of multigraphs.

Pólya’s approach uses the concept of group action. For more details on
this notion and its applications to constructive theory of discrete structures
see e.g. [10, 11].

Consider two group actions GX and HY , i.e. mappings

G×X → X, (g, x) 7→ gx, H × Y → Y, (h, y) 7→ hy,

subject to the conditions that g′(gx) = (g′g)x, h′(hy) = (h′h)y and 1x =
x, 1y = y, for any g, g′ ∈ G, h, h′ ∈ H, and the identity elements 1 of G and
H.

These actions give rise to corresponding actions of G,H, H ×G, H oG on
the set of mappings

Y X := {f | f : X → Y }.
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They are defined as follows:

G× Y X → Y X , (g, f) 7→ f ◦ g−1,

where (f ◦ g−1)(x) = f(g−1x),

H × Y X → Y X , (h, f) 7→ h ◦ f,

where (h ◦ f)(x) = hf(x),

(H ×G)× Y X → Y X , ((h, g), f) 7→ h ◦ f ◦ g−1,

where (h ◦ f ◦ g−1)(x) = h(f(g−1x)),

(H oG)× Y X → Y X , ((ϕ, g), f) 7→ f̃ ,

where f̃(x) = ϕ(x)f(g−1x), since the wreath product

H oG = HX ×G = {(ϕ, g) | ϕ : X→H, g ∈ G}.

Many structures in mathematics and sciences can be considered as orbits of
such actions, for suitably chosen GX and HY. Examples are graphs, molecular
graphs, switching functions, and various other notions.

In Pólya’s approach to the enumeration of permutational isomers, X is
the set of active sites of the molecular skeleton, G means the symmetry group
of the skeleton, while Y denotes the set of admissible kinds of ligands that
are to be distributed over the active sites of the skeleton. The corresponding
action is an action of the form G(Y X).

A good example for the fourth type of action is the enumeration of
stereoisomeric inositols (see Figure 1). Here we also have a skeleton (cy-
clohexane) with 6 active sites. But now, each ligand (OH) may be connected
to the skeleton in two different ways, say up and down. In order to obtain
the appropriate group, we have to extend the automorphism group of the
skeleton cyclohexane (which we assume to be the dihedral group D6, or D6h

in Schönflies symbolism) by the information of whether or not the direction
of each ring atom’s OH ligand (up or down) is changed by a particular auto-
morphism. The proper group to consider is a subgroup of the wreath product
S2 oD6, action is on the set Y X with the set Y of admissible configurations
(up or down) and X as before the set of 6 active sites of the skeleton, see
[12]. (Remark: Wreath products of the form S2 oG, G a permutation group,
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Figure 1: The nine inositols

are also known as signed permutation groups. In reference [12] the latter
notation is used.)

The very elegant method of Pólya determines the number of orbits of the
above group actions. This is achieved by an application of the Lemma of
Cauchy–Frobenius which is obtained by doubly counting pairs (g, f) with
gf = f, a powerful combinatorial tool. Unfortunately, this approach is
non–constructive, but meanwhile a constructive version of that lemma exists
([13]).

The chemist usually wants to see the isomers that were counted. So we
need a constructive solution of the orbit problem, a transversal of the orbits
has to be evaluated!

The first systematic approach towards a construction of the isomers that
correspond to a given molecular formula which did not assume a knowl-
edge of the skeleton and its symmetry group was the famous DENDRAL
project [14], run by Lederberg in the sixties/seventies. It was successful
since it comprised an efficient generator. It was mathematically sophisticated
since its designers used algebraic concepts such as computation of transver-
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sals of sets of double cosets, Sims chains etc. The reason for its limited use
was that at that time no proper graphics were available, exotic languages
were used, and the hardware was very expensive at that time compared with
today’s standards and efficiency. The project’s ambitious motivation was to
implement Automated Molecular Structure Elucidation! Its idea is
the following:

- Generate in silico all the structural formulae that fit to given data of
an unknown compound, coming from a given chemical spectrum, say
NMR, IR, or MS.

- If the resulting set of candidates is too big (which usually is the case),
then try to reduce this search space, by adding further information
coming from the history of the compound etc.

- Restart the generation by including these new constraints interactively
until a suitably small set of structures remains.

- If there is a reasonably small search space or no further information
available, simulate for each of the remaining structural formulae its
spectrum and rank the candidates according to similarity between the
simulated and the experimental spectrum.

Based on MS, this is still a difficult problem, and only rather simple cases
can routinely be solved using a PC [15, 16]. For a collection of molecular
generators that can be used see the special issue on molecular generators

A. Kerber (ed.): MATCH Commun. Math. Comput. Chem. 27
(1992)

A molecular generator that is suitable for mass spectroscopy (since it con-
tains an interpreter of mass spectra based on Varmuza’s MSclass [17]) is
MOLGEN–MS [18]. For NMR spectroscopy, techniques to extract structural
detail from a spectrum are more advanced, and so is the structure elucidation
software developed by Elyashberg [19, 20] (generator by Molodtsov [21]).
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2.1 A Mathematical Model of Organic Molecules

The molecular model used in MOLGEN can be described as follows: Each
atom p of the molecule in question carries the type of the atom:

AT (p) = (AS(p), val(p), rad(p), chg(p)),

where

- AS(p) is the atom symbol (e.g. C, O, N, ...),

- val(p) means the valence of p,

- rad(p) ∈ {TRUE,FALSE} indicates whether p is a radical center,
and

- chg(p) ∈ {−3,−2, ..., +3} indicates the atomic charge of p.

Aromatic doublets can be eliminated after construction, but there remains a
problem (see Subsection 6.1).

This leads to the following definition that allows to embed this model
into Pólya’s Theory of Enumeration:

Definition 2.1 Let A := {θ1, ..., θn} denote a set of n atoms, and indicate
by (A

2

)
:= {{i, j} ⊆ A, i 6= j},

the set of pairs of atoms in A, by 4 := {0, 1, 2, 3} the set of bond multiplicities.

• A molecular graph is a mapping f :
(A

2

) → 4, where f{i, j} denotes the
bond multiplicity between atoms i and j.

• The set 4(A2) of all these mappings is the set of all possible molecular
graphs,

• and the subset of connected molecular graphs with the prescribed va-

lences is denoted by (4(A2))′.

• Since the atoms are numbered, we introduce the equivalence relation f ∼
f ′, if there exists a permutation π ∈ Sn that keeps the type: AT (θi) =
AT (θπ(i)) and the multiplicities of the bonds:

f ({θi, θj}) = f ′
({θπ(i), θπ(j)}

)
.
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• The set of orbits of the symmetric group

Sn\\
(
4(A2)

)′

then is the set of structural formulae corresponding to the given molec-
ular formula defined by AS.

2

Hence, in the generator MOLGEN group theoretic methods play a decisive
role, accompanied by combinatorial tools, and a careful concept for the data
structure. Constraints on the molecular candidates (for example substruc-
tures, ring sizes,...) are already used during the construction (see [22, 23, 24]).

Pairwise isomorphism tests have to be avoided strictly. For this purpose
a canonical form of molecular graphs is required [25]. The research on fast
algorithms for canonical forms is still ongoing.

There are several specialized versions of MOLGEN available:

- MOLGEN, stand-alone, usable online in a reduced form, several ver-
sions (see below),

- MOLGEN-MS, which interprets mass spectra,

- MOLGEN-COMB, for the generation of combinatorial libraries from
a set of molecules and reactions,

- MOLGEN-QSPR, offers >700 molecular descriptors and communi-
cates with statistical software,

- UNIMOLIS, is meant for E-learning of the basic notions of isomerism,
in particular of stereoisomerism. It is available online

http://www.unimolis.de/

and also on CD. It communicates online with MOLGEN.

MOLGEN 4.0, for example (see [26]), allows to put the following constraints
in addition to a molecular formula:

• intervals for atom numbers,

• atom types,
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• a goodlist of possibly overlapping substructures that are contained in
the generated molecules, and

• a goodlist of substructures that must not overlap.

• A badlist of fragments which are forbidden,

• surroundings of fragments, subunits,

• H-distribution, hybridization,

• numbers of cycles of various lengths,

• numbers of bonds of given multiplicities,

• the number of 13C NMR signals, which yields a bound for the symmetry
group.

Stereoisomers are obtained by finding stereocenters and systematically in-
verting their configurations [27, 28, 3, 12]. Dreiding’s and Dress’ approach
[29, 30, 31] using chirotopes (also known as oriented matroids) is under de-
velopment [32], see section 5.

2.2 The Main Constructive Methods

We list these methods in particular, since the very same methods apply also to
the construction of various other discrete structures, e.g. to the construction
of groups, designs and codes.

2.1 Equivalence classes as orbits: To construct finite discrete structures
defined as equivalence classes, we proceed as follows:

i) Replace the equivalence relation by a group action

G×X → X, (g, x) 7→ gx

that has the equivalence classes as orbits

G(x) = {gx | g ∈ G},
so that the set of equivalence classes is the set of orbits

G \\X = {G(x) | x ∈ X}.
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ii) The orbit G(x) is essentially the same as the set

G/Gx = {gGx | g ∈ G}

of left cosets gGx = {gh | h ∈ Gx} of the stabilizer

Gx = {g ∈ G | gx = x},
since the mapping

G(x) → G/Gx, gx 7→ gGx,

is a bijection.

2.2 The use of double cosets: Assume an action GX and a subgroup
U ≤ G.

i) The set of orbits of U on G(x) is bijective to the set

U\G/Gx = {UgGx | g ∈ G}
of double cosets

UgGx = {ugh | u ∈ U, h ∈ Gx},
as the mapping

U \\G(x) → U\G/Gx, U(gx) 7→ UgGx

is a bijection.

ii) For example, in Pólya’s Theory, the set of equivalence classes of map-
pings with the same content as f ∈ Y X is bijective to

G\SX/(SX)f ,

where (SX)f means the stabilizer of f ∈ Y X in the symmetric group
SX on X.

iii) For the use of double cosets in chemistry, the reader is referred to [33],
the review article by Ruch and Klein [34] and [35].

iv) Hall used double cosets for the construction of p–groups as early as
in 1939.
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Thus, if we want to represent the orbits of U on X, we can break the problem
into pieces by choosing a suitable bigger group G which also acts on X and
in a way that its action extends the action of U. We restrict the attention
to orbits G(x) of G, and in each case we evaluate a transversal of the set
of double cosets U\G/Gx, from which a transversal of the orbits can be
obtained.

2.3 The Homomorphism Principle: Assume two finite actions of G, say

GM and GN, together with a surjective mapping Θ: M → N, such that Θ
commutes with the action (such actions are called homomorphic):

GM

-

GN

Θ such that Θ(gm) = gΘ(m),
for each m ∈ M, g ∈ G.

Moreover we assume that T is a transversal of the set of orbits G \\N of G
on N . Then the following is true (see e.g. [10, 11]):

i) Each orbit ω ∈ G \\M intersects the inverse image Θ−1(n) of exactly
one element in the transversal:

∀ ω ∈ G \\M ∃1 n ∈ T : ω ∩Θ−1(n) 6= ∅.

ii) This intersection is an orbit of the stabilizer of the representative:

ω ∩Θ−1(n) ∈ Gn \\M.

iii) Hence we can obtain a transversal TG of G \\M as disjoint union of
transversals of the inverse images:

TG :=
⋃
n∈T

T (n),

where T (n) denotes a transversal of Gn \\Θ−1(n).

This method can be applied, for example, to actions of the form G(Y X), and
it allows recursively to evaluate transversals, recursive to the order |Y |. Thus
the Homomorphism Principle allows to reduce the size of the set and of the
group.
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Moreover, the Homomorphism Principle can be applied for a recursive
evaluation of orbit representatives of G \\Y X , according to content. The
content of f ∈ Y X is the sequence of multiplicities |f−1(y)|, y ∈ Y. The
recursion uses an up-down-sequence, a subgroup-ladder [36], of stabilizers of
the form

(SX)f = ⊕y∈Y Sf−1(y) ≤ SX

in the symmetric group. Here is the subgroup ladder that can be used in the
evaluation of the 22 permutational isomers of tetrachlorodibenzo-p-dioxin:

S4 ⊕ S1 ⊕ S3

©©©©

S5 ⊕ S3

S4 ⊕ S4

¡
¡

¡¡
S5 ⊕ S1 ⊕ S2

³³³³

S6 ⊕ S2

S7 ⊕ S1

¡
¡

¡¡S6 ⊕ S1 ⊕ S1
³³³³
¡

¡
¡¡

S8

¡
¡

¡¡

The underlined subgroups are stabilizers (in the symmetric group) of per-
mutational isomers obtained by distributing chlorine and hydrogen atoms
over the free active sites. S7 ⊕ S1, for example, is – up to isomorphism –
the stabilizer of an isomer that contains 7 hydrogen atoms and exactly one
chlorine atom, while S4⊕S4 is isomorphic to the stabilizer of an isomer that
contains 4 hydrogen atoms and 4 chlorine atoms, i.e. a permutational isomer
of dioxin. To this subgroup ladder there corresponds the following ladder of
sets of double cosets

V4\S8/S4 ⊕ S1 ⊕ S3

©©©©

V4\S8/S5 ⊕ S3

V4\S8/S4 ⊕ S4

¡
¡

¡¡
V4\S8/S5 ⊕ S1 ⊕ S2

³³³³

V4\S8/S6 ⊕ S2

V4\S8/S7 ⊕ S1

¡
¡

¡¡V4\S8/S6 ⊕ S1 ⊕ S1
³³³³
¡

¡
¡¡

V4\S8/S8

¡
¡

¡¡

13



To this ladder of sets of double cosets we apply the Homomorphism Principle.
For example, in the last but one step, we have a transversal of V4\S8/S5⊕S3

at hand, i.e. the permutational isomers containing exactly 5 hydrogen and
3 chlorine atoms. From this transversal we obtain, by an application of the
Homomorphism Principle, a transversal of the bigger set V4\S8/S4 ⊕ S1 ⊕
S3. In the final step we evaluate the desired transversal of the smaller set
V4\S8/S4⊕S4 from which we obtain the desired 22 permutational isomers of
dioxin that are shown in Figure 2, constructed by MOLGEN. For the sake
of clarity, the 4 hydrogen atoms are not shown.

3 Molecular Libraries

Once we have an efficient generator at hand, it is easy to generate molecular
libraries. They play a central role in combinatorial chemistry (see e.g. [37]).
For instance QSAR/QSPR models can be computed and applied in order to
predict physicochemical properties or biological activities. For the generation
of virtual combinatorial libraries MOLGEN-COMB was designed ([38, 39]).
It is part of MOLGEN-QSPR [40]. The evaluation of molecular descriptors
– altogether more than 700 of them – allows to look for correlations be-
tween values of descriptors and compound properties, to build and to apply
QSAR/QSPR models. A classical example is the search for the boiling points
of the compounds in a molecular library, if this property is known for only
part of the library.

There is an interface that allows to connect MOLGEN–QSPR with the
software package for statistical computing R [41]. See [42, 43] for exam-
ples, where boiling points of haloalkanes and in particular of fluoroalkanes,
respectively, are predicted.

An interesting byproduct of the application of MOLGEN–QSPR is that
we can also look for correlations between molecular descriptors. An appli-
cation to a library of 13410 diverse chemical compounds exhibited 26 equi-
valence classes of fully correlated descriptors [44]. Using the same computer
program we found that the second Zagreb Index M2 is half of mwc(3), the
number of molecular walks of length 3 (see Section 4).
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Figure 2: The 22 permutational isomers of dioxin
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4 Quantitative Structure–Property/Activity

Relationships

A frequently occurring problem in computational chemistry is the predic-
tion of physicochemical properties or biological activities for chemical com-
pounds given by their molecular graphs. A widely applied approach is
the establishment of quantitative structure–property/activity relationships
(QSPR/QSAR) starting from a set of compounds with known property/ac-
tivity values. These known values can originate either from databases or from
new measurements. We call this initial set of compounds the real library.

The search for a QSPR/QSAR is generally divided into two steps:

i) Using molecular descriptors chemical compounds are mapped onto real
numbers. Typically a large number of molecular descriptors is applied,
so that after this first step chemical compounds are represented by
equal length vectors of real numbers. Together with the known prop-
erty/activity values these are the input for the second step.

ii) Methods of supervised statistical learning are applied in order to find
prediction functions that have the vector representations of the real
library compounds as input, and that have output values which well
fit the given property/activity values. In terms of statistical learning
theory, molecular descriptors serve as independent variables and the
property/activity is the dependent variable.

Once a QSPR/QSAR is found, it can be applied in order to make pre-
dictions for compounds whose property/activity values are not yet known.
These could for instance be part of a virtual library generated by MOLGEN–
COMB. Figure 3 shows a simplified flowchart of QSPR/QSAR search and
application. Algorithmic parts are highlighted in grey. In the following we
will give a short survey on frequently used molecular descriptors, topological
indices, followed by a short summary of machine learning techniques offered
by MOLGEN–QSPR.

4.1 Molecular Descriptors

For a connected molecular graph f on n atoms let f s the associated simple
graph, Ef the set of edges of f , Ω the set of non–hydrogen atoms, f |Ω the
subgraph of f induced by Ω, distf (i, j) the distance between atoms i and j
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Figure 3: Flowchart of QSPR/QSAR search and application
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and degs
f (i) the number of neighbors of i in f , or, in other words, the vertex

degree of i in f s.
One of the first applications of topological indices was developed by

H. Wiener [45]. He used the index later named after him

W (f) =
1

2

∑
i∈Ω

∑
j∈Ω

distf (i, j),

for modeling boiling points of alkanes (cf. 4.3).
Zagreb indices [46] sum up squares and products of vertex degrees:

M1(f) =
∑
i∈Ω

(
degs

f |Ω(i)
)2

,

M2(f) =
∑

{i,j}∈Ef |Ω

degs
f |Ω(i) · degs

f |Ω(j).

Randic indices [47, 48] of order m are computed by

0χ(f) =
∑
i∈Ω

(
degs

f |Ω(i)
)− 1

2

if m = 0 and by

mχ(f) =
∑

(v0,...,vm)
path in f |Ω

m∏
i=0

(
degs

f |Ω(vi)
)− 1

2

if m > 0.
The vertex distance degree or distance sum of vertex i ∈ Ω is defined as

degd
f |Ω(i) :=

∑
j∈Ω

distf (i, j).

It is needed for computing the Balaban index [49, 50]

J(f) =
B(f)

C(f) + 1

∑

(i,j)∈Ef|Ω

(
degd

f |Ω(i) · degd
f |Ω(j)

)− 1
2 .

Herein B(f) denotes the number of bonds of the molecular graph and C(f)
represents its cyclomatic number.
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The molecular topological index by Schultz [51, 52] is defined as

MTI(f) =
∑
i∈Ω

∑
j∈Ω

∑

k∈Ω

aik (akj + distf (k, j)) ,

where Afs|Ω = (aij) denotes the adjacency matrix of f s|Ω.
The molecular walk count of length k adds all entries of the k–th power

of the adjacency matrix of f s|Ω:

mwc(k)(f) =
∑
i∈Ω

∑
j∈Ω

a
(k)
ij , where (a

(k)
ij ) = (Afs|Ω)k.

These indices describe the labyrinthicity and complexity [53, 54, 55] of a
(molecular) graph. The total walk count sums molecular walk counts over all
lengths k:

twc(f) =
∑

k<|Ω|
mwc(k)(f).

The principal eigenvalue (largest in absolute value) of the adjacency matrix
Afs|Ω can also be used as molecular descriptor. It is denoted by λA

1 .
There are topological indices that are not purely topological, but which

take also the chemical element of the atoms into account.
For a molecular graph f the valence vertex degree of atom i ∈ Ω is defined

as

degv
f (i) =

V E(i)−HC(i)

TE(i)− V E(i)− 1
.

HC(i) denotes the number of H atoms attached to atom i, V E(i) is the
number of valence electrons of atom i, and TE(i) is the total number of
electrons of atom i, i.e. its atomic number.

Valence vertex degrees are used to compute Kier & Hall indices [56, 57,
48]. Similar to Randic indices of order m Kier & Hall indices also sum over
all paths of length m, but they use valence vertex degrees instead of vertex
degrees:

0χv(f) =
∑
i∈Ω

(
degv

f (i)
)− 1

2 ,

mχv(f) =
∑

(v0,...,vm)
path in f |Ω

m∏
i=0

(
degv

f (vi)
)− 1

2 .
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Another category of topological indices that also take chemical elements of
atoms into account, are Basak’s information theoretical indices [58, 59]. For
computing them at first all atoms have to be classified with respect to their
chemical elements and bonds to neighboring atoms up to distance r. With
kr classes and nri atoms in class i, the following indices can be defined:

ICr(f) =
∑

i∈kr

nri

n
log2

nri

n
,

CICr(f) = log2 n− ICr(f) and

SICr(f) = (log2 n)−1ICr(f).

These are called Basak’s information content, complementary information
content and structural information content of order r.

For reviews on these and many other molecular descriptors see the books
written by Todeschini and Consonni [60], Karelson [61], and the collec-
tion [62] edited by Devillers and Balaban.

4.2 Supervised Statistical Learning

Supervised statistical learning is characterized by the presence of the depen-
dent variable that guides the learning process and acts as a “teacher”. Also
unsupervised learning techniques, such as cluster analysis, play an impor-
tant role in cheminformatics. These are typically applied when questions of
diversity/similarity within chemical libraries have to be answered.

For the purpose of property/activity prediction two types of supervised
learning techniques can be distinguished. If the dependent variable is dis-
crete, classification methods will be applied. In QSPR/QSAR the dependent
variable has quantitative character, i.e. is given by real numbers. The appro-
priate category of learning technique is called regression. A simple type of
regression is ordinary least squares regression, based on a QR–decomposition
of the design matrix defined by the descriptor values. Then the prediction
function is a linear function of the descriptors. Often this type of regression
is also called multiple linear regression (MLR).

In order to avoid overfitting in MLR it is necessary to find small subsets
of descriptors that allow the calculation of good prediction functions. For
this purpose there is an algorithm included in MOLGEN–QSPR that per-
forms an exhaustive search for the best subsets of descriptors for MLR. For
problems with large numbers of compounds and descriptors and/or big sub-
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sets exhaustive search usually is too time expensive. In order to handle such
problems MOLGEN–QSPR offers an algorithm for step-up subset selection.

Besides these methods based on MLR, the current version of MOLGEN–
QSPR offers k–nearest neighbor regression, and via an interface to the (freely
available) statistical software package R [41] several more sophisticated tech-
niques:

• regression trees [63],

• artificial neural networks [64, 65],

• support vector machines [66] and

• multivariate methods including PLS and PCR [67].

For a comprehensive survey on statistical learning, see [68]. We conclude this
section with a small example of a QSPR study extracted from [69].

4.3 Example: Boiling Points of Decanes

Figure 4 shows a real library of 50 decanes together with their boiling points
(BP). Structures and BP are extracted from the Beilstein registry, BP are
given in ◦C. We want to find QSPR models for this physical property.

For this purpose we start our examinations with 30 topological descriptors
as introduced in subsection 4.1:

W , M1, M2,
0χ, 1χ, 2χ, 0χv, 1χv, 2χv, 3χv, J , MTI, twc,

mwc(2), mwc(3), mwc(4), mwc(5), mwc(6), mwc(7), mwc(8),
λA

1 , IC0, CIC0, SIC0, IC1, CIC1, SIC1, IC2, CIC2, SIC2.

Since decanes are exclusively built of carbon and hydrogen atoms connected
by single bonds, kχ and kχv have identical values. For this reason we exclude
0χ, 1χ and 2χ. By definition all decanes have the same molecular formula
C10H22. Thus IC0, CIC0, SIC0 are constant and will not influence the
modeling. Tables 1 and 4.3 show values for the remaining 24 indices applied
to the 50 decanes of Fig. 4. We see that M1 and mwc(2) have the same
values. This identity holds in general (for a proof see [55]):

mwc(2) = M1.

In order to detect pairwise affine dependences between the 24 indices we
conducted a correlation analysis. This way we found the dependence between
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BP:136.0 1 BP:145.0 2 BP:146.0 3 BP:147.0 4 BP:147.6 5

BP:147.7 6 BP:148.5 7 BP:148.7 8 BP:149.7 9 BP:151.5 10

BP:152.5 11 BP:152.8 12 BP:153.7 13 BP:154.0 14 BP:154.5 15

BP:154.5 16 BP:155.5 17 BP:155.5 18 BP:156.0 19 BP:157.0 20

BP:157.5 21 BP:157.8 22 BP:158.3 23 BP:158.8 24 BP:158.8 25

BP:159.0 26 BP:159.0 27 BP:159.5 28 BP:159.5 29 BP:159.8 30

BP:160.0 31 BP:160.0 32 BP:160.1 33 BP:160.6 34 BP:160.7 35

BP:162.0 36 BP:162.4 37 BP:162.5 38 BP:163.5 39 BP:163.8 40

BP:164.5 41 BP:165.1 42 BP:165.7 43 BP:166.0 44 BP:166.0 45

BP:167.0 46 BP:167.7 47 BP:168.4 48 BP:170.9 49 BP:174.0 50

Figure 4: Real library of decanes together with their boiling points
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M2 and mwc(3) by an automated method: The correlation matrix shows an
entry 1 for these two descriptors. The exact relation between these two
indices can also be computed automatically by simply calculating a linear
regression with one of the indices as dependent variable and the other one as
independent variable. Thus we obtained

mwc(3) = 2M2.

Again, this relation holds in general, see [44].
Being fully correlated defines an equivalence relation on the set of molecu-

lar descriptors. Since we will search for MLR models, only one representative
of each equivalence class needs to be included in our studies. Further mem-
bers of the equivalence class will not improve a MLR.

A glance at the correlation matrix shows further dependences between
the descriptors. Table 2 represents a part of the correlation matrix. Signs
of correlation coefficients were suppressed. The first column shows absolute
values of the correlation coefficients between BP and the descriptors. De-
scriptors were sorted in descending order of these values. The other columns
contain absolute values of correlation coefficients of two descriptors each. In
this particular example pairs from {IC1, CIC1, SIC1} are fully correlated.
This is due to the fact that compounds in the decane library have the same
number of atoms. More precisely, for decanes we have CIC1 = 5− IC1 and
SIC1 = 1

5
IC1. Also pairs from {IC2, CIC2, SIC2} are fully correlated. Thus

we exclude CIC1, SIC1, CIC2 and SIC2 from our considerations.
Using all remaining 18 indices, MLR delivers a model with R2 = 0.97439

and R2
CV = 0, 94191. In order to avoid overfitting we look for models with

fewer descriptors. For n = 1, ..., 5 we run through all n–subsets of the 18
topological indices and note the models with highest R2. Furthermore we
give the used descriptors Xj, j ∈ n, followed by the QSPR equation for
the prediction function f . Finally also prediction functions for auto–scaled
descriptor values (with arithmetic mean 0 and variance 1) are given in order
to allow better appreciation of the various descriptors’ influence.

n = 1 descriptor: 2χv,
f = −8.0356X0 + 190.74

= −5.0362X∗
0 + 157.85.

n = 2 descriptors: mwc(4), mwc(8),
f = −1.2961X0 + 0.026540X1 + 287.83

= −42.917X∗
0 + 41.312X∗

1 + 157.85.
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W M
1

M
2 0 χ

v
1 χ

v
2 χ

v
3 χ

v

J M
T
I

tw
c

m
w
c
(2
)

m
w
c
(3
)

1 127 46 44 8.4142 4.2071 5.6213 1.6250 3.5630 464 19248 46 88
2 134 42 41 8.1987 4.4545 4.6128 2.0841 3.3555 488 15138 42 82
3 135 40 39 8.1463 4.5197 4.3643 1.7475 3.3374 490 12930 40 78
4 126 42 42 8.1987 4.4925 4.4473 2.0557 3.6308 456 17334 42 84
5 124 44 44 8.3618 4.3272 4.9861 2.0724 3.6842 450 19018 44 88
6 131 42 41 8.1987 4.4545 4.6586 1.7423 3.4695 476 16146 42 82
7 139 42 40 8.1987 4.4165 4.8467 1.7083 3.2055 508 13874 42 80
8 123 44 45 8.3618 4.3372 4.8966 2.3034 3.7348 446 20498 44 90
9 119 46 46 8.4142 4.2678 5.2552 1.9660 3.8876 432 23048 46 92

10 127 42 42 8.1987 4.4772 4.5122 1.8876 3.6256 460 17946 42 84
11 142 38 37 7.9831 4.6639 3.8769 1.9243 3.1600 516 11114 38 74
12 131 42 42 8.1987 4.4772 4.4503 2.3556 3.4647 476 16602 42 84
13 120 44 46 8.3618 4.3599 4.7413 2.4973 3.8656 434 22234 44 92
14 146 40 38 8.0355 4.5607 4.3713 1.7803 3.0438 534 12390 40 76
15 130 40 41 8.1463 4.5746 3.9924 2.4585 3.5027 470 14984 40 82
16 126 42 43 8.1987 4.5152 4.2353 2.5551 3.6419 456 18280 42 86
17 136 40 40 8.1463 4.5366 4.1925 2.3374 3.3014 494 13242 40 80
18 118 44 47 8.3618 4.3921 4.5402 2.8635 3.9418 426 23206 44 94
19 121 42 45 8.3094 4.4641 4.2063 2.9325 3.8140 436 19426 42 90
20 143 38 37 7.9831 4.6639 3.8650 2.0183 3.1244 520 10786 38 74
21 134 40 40 8.0355 4.6213 4.0178 2.1339 3.4175 486 15664 40 80
22 122 42 44 8.1987 4.5378 4.1157 2.6082 3.8026 440 20028 42 88
23 133 38 39 7.9831 4.7399 3.4316 2.5873 3.4123 480 13028 38 78
24 131 38 39 7.9831 4.7187 3.5814 2.2617 3.4999 472 13848 38 78
25 138 38 38 7.9831 4.7019 3.6430 2.2831 3.2686 500 12020 38 76
26 126 40 42 8.0355 4.6820 3.6642 2.5607 3.6903 454 18298 40 84
27 111 48 51 8.5774 4.1547 5.4537 2.5981 4.2311 402 29658 48 102
28 146 38 37 7.9831 4.6639 3.8382 2.1753 3.0333 532 10236 38 74
29 116 44 48 8.3618 4.4147 4.3748 3.1439 4.0341 418 24610 44 96
30 115 46 50 8.4142 4.3107 4.8839 2.9053 4.1018 416 29160 46 100
31 141 38 38 7.9831 4.7019 3.6042 2.5461 3.1682 512 11298 38 76
32 151 38 36 7.9831 4.6259 4.0722 1.8129 2.9095 552 9316 38 72
33 127 42 44 8.1987 4.5040 4.2468 2.7376 3.6334 460 19738 42 88
34 138 40 40 8.0355 4.6213 3.9749 2.4142 3.2770 502 14774 40 80
35 125 38 41 7.9831 4.7948 3.1532 2.7642 3.6982 448 15866 38 82
36 138 36 36 7.8200 4.8461 3.2321 2.0908 3.2951 498 10950 36 72
37 135 38 39 7.9831 4.7187 3.5319 2.4594 3.3759 488 13386 38 78
38 115 44 49 8.3618 4.4248 4.2854 3.3705 4.0893 414 26106 44 98
39 141 36 36 7.8200 4.8461 3.2052 2.2402 3.2055 510 10570 36 72
40 129 40 42 8.0355 4.6820 3.6213 2.8410 3.5755 466 17588 40 84
41 143 38 38 7.9831 4.6807 3.7171 2.4011 3.1296 520 11616 38 76
42 149 36 35 7.8200 4.8081 3.3896 2.1010 2.9984 542 9330 36 70
43 150 36 35 7.8200 4.8081 3.3896 2.0820 2.9680 546 9194 36 70
44 145 36 36 7.8200 4.8461 3.1783 2.3706 3.0869 526 10052 36 72
45 121 40 44 8.0355 4.7426 3.3107 3.0303 3.8748 434 20526 40 88
46 158 36 34 7.8200 4.7701 3.5967 1.8850 2.7732 578 7896 36 68
47 153 36 35 7.8200 4.8081 3.3628 2.2474 2.8862 558 8788 36 70
48 110 46 52 8.4142 4.3713 4.5178 3.3713 4.3283 396 31916 46 104
49 111 46 52 8.4142 4.3713 4.4749 3.5999 4.2818 400 31632 46 104
50 165 34 32 7.6569 4.9142 3.1213 1.9571 2.6476 604 6500 34 64

Table 1: Values of topological indices for the real library of decanes in Fig. 4
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λ
A
1 IC

1
C
IC

1

SI
C 1

IC
2

C
IC

2

SI
C 2

1 218 432 1040 2114 4978 2.1987 1.3245 3.6755 0.26489 1.7947 3.2053 0.35895
2 188 376 854 1728 3900 2.1474 1.4227 3.5773 0.28455 2.5354 2.4646 0.50707
3 174 342 764 1506 3366 2.1010 1.3602 3.6398 0.27205 2.2823 2.7177 0.45645
4 198 402 942 1926 4494 2.1889 1.4227 3.5773 0.28455 2.4104 2.5896 0.48207
5 210 430 1012 2098 4894 2.2047 1.3870 3.6130 0.27739 2.2322 2.7678 0.44645
6 194 382 908 1794 4272 2.1753 1.4227 3.5773 0.28455 2.5354 2.4646 0.50707
7 184 356 818 1590 3660 2.1289 1.4227 3.5773 0.28455 2.4729 2.5271 0.49457
8 212 450 1040 2250 5144 2.2361 1.3870 3.6130 0.27739 2.2322 2.7678 0.44645
9 234 472 1198 2422 6140 2.2646 1.3245 3.6755 0.26489 2.0416 2.9584 0.40832

10 200 404 968 1962 4710 2.2089 1.4227 3.5773 0.28455 2.5590 2.4410 0.51179
11 158 312 668 1328 2844 2.0698 1.3716 3.6284 0.27433 2.6945 2.3055 0.53891
12 192 396 896 1874 4214 2.1813 1.4227 3.5773 0.28455 2.4965 2.5035 0.49929
13 218 470 1102 2402 5608 2.2616 1.3870 3.6130 0.27739 2.2169 2.7831 0.44338
14 170 328 738 1436 3242 2.1192 1.3213 3.6787 0.26427 2.3204 2.6796 0.46407
15 180 376 822 1730 3770 2.1455 1.3602 3.6398 0.27205 2.4576 2.5424 0.49151
16 200 416 968 2020 4704 2.2082 1.4227 3.5773 0.28455 2.5590 2.4410 0.51179
17 172 354 754 1566 3326 2.1067 1.3602 3.6398 0.27205 2.3448 2.6552 0.46895
18 222 484 1138 2494 5854 2.2711 1.3870 3.6130 0.27739 2.3183 2.6817 0.46367
19 202 442 986 2170 4826 2.2143 1.1995 3.8005 0.23989 1.7947 3.2053 0.35895
20 156 310 650 1306 2724 2.0529 1.3716 3.6284 0.27433 2.5460 2.4540 0.50919
21 182 372 852 1756 4030 2.1823 1.3213 3.6787 0.26427 2.3675 2.6325 0.47351
22 206 438 1024 2186 5106 2.2361 1.4227 3.5773 0.28455 2.4965 2.5035 0.49929
23 166 346 736 1538 3270 2.1085 1.3716 3.6284 0.27433 2.5460 2.4540 0.50919
24 168 354 760 1614 3456 2.1358 1.3716 3.6284 0.27433 2.5931 2.4069 0.51863
25 162 328 702 1426 3056 2.0886 1.3716 3.6284 0.27433 2.6556 2.3444 0.53113
26 192 410 942 2018 4642 2.2216 1.3213 3.6787 0.26427 2.3439 2.6561 0.46879
27 258 558 1404 3042 7650 2.3344 1.2575 3.7425 0.25151 1.5704 3.4296 0.31407
28 154 304 632 1252 2602 2.0314 1.3716 3.6284 0.27433 2.5695 2.4305 0.51391
29 226 502 1180 2626 6174 2.2882 1.3870 3.6130 0.27739 2.3183 2.6817 0.46367
30 242 552 1310 3038 7156 2.3433 1.3245 3.6755 0.26489 2.0416 2.9584 0.40832
31 158 322 668 1368 2834 2.0615 1.3716 3.6284 0.27433 2.5306 2.4694 0.50613
32 150 288 596 1154 2374 2.0000 1.3716 3.6284 0.27433 2.4056 2.5944 0.48113
33 200 436 986 2174 4916 2.2410 1.4227 3.5773 0.28455 2.5590 2.4410 0.51179
34 178 364 816 1680 3784 2.1679 1.3213 3.6787 0.26427 2.4300 2.5700 0.48601
35 178 386 838 1818 3946 2.1701 1.3716 3.6284 0.27433 2.2806 2.7194 0.45613
36 150 306 642 1314 2760 2.0743 1.3009 3.6991 0.26017 2.3183 2.6817 0.46367
37 166 348 742 1568 3342 2.1268 1.3716 3.6284 0.27433 2.5306 2.4694 0.50613
38 228 522 1208 2778 6424 2.3073 1.3870 3.6130 0.27739 2.3183 2.6817 0.46367
39 148 302 624 1280 2648 2.0642 1.3009 3.6991 0.26017 2.4280 2.5720 0.48560
40 188 404 908 1962 4418 2.2120 1.3213 3.6787 0.26427 2.4064 2.5936 0.48129
41 158 324 674 1394 2904 2.0886 1.3716 3.6284 0.27433 2.6320 2.3680 0.52641
42 142 282 574 1150 2344 2.0285 1.3009 3.6991 0.26017 2.5141 2.4859 0.50282
43 142 280 572 1134 2324 2.0237 1.3009 3.6991 0.26017 2.5141 2.4859 0.50282
44 146 296 604 1230 2516 2.0491 1.3009 3.6991 0.26017 2.3655 2.6345 0.47310
45 200 444 1010 2246 5110 2.2504 1.3213 3.6787 0.26427 2.2189 2.7811 0.44379
46 136 260 520 1000 2000 1.9696 1.3009 3.6991 0.26017 2.4516 2.5484 0.49032
47 140 276 554 1098 2208 2.0066 1.3009 3.6991 0.26017 2.4516 2.5484 0.49032
48 252 586 1402 3286 7826 2.3649 1.3245 3.6755 0.26489 2.0294 2.9706 0.40588
49 250 584 1388 3266 7734 2.3623 1.3245 3.6755 0.26489 1.9669 3.0331 0.39338
50 122 232 444 848 1626 1.9190 1.1216 3.8784 0.22433 1.9056 3.0944 0.38113

Table 1, continued
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n = 3 descriptors: 3χv, twc, mwc(5),
f = 16.793X0 + 0.0085894X1 − 0.69764X2 + 246.86

= 7.7409X∗
0 + 53.768X∗

1 − 59.883X∗
2 + 157.85.

n = 4 descriptors: 3χv, mwc(6), mwc(7), mwc(8),
f = 10.930X0 − 0.32884X1 − 0.042581X2 + 0.064274X3 + 229.69

= 5.0382X∗
0 − 79.236X∗

1 − 25.319X∗
2 + 100.05X∗

3 + 157.85.

n = 5 descriptors: W , 3χv, twc, mwc(4), mwc(8),
f = 0.44512X0 + 9.7937X1 − 0.0038957X2 − 0.95038X3 + 0.03649X4 + 164.25

= 5.6464X∗
0 + 4.5145X∗

1 − 24.386X∗
2 − 31.468X∗

3 + 56.794X∗
4 + 157.85.

Table 3 shows statistical characteristics R2, R2
CV , S, SCV and F , as well

as differences between values obtained by resubstitution and leave–one–out
crossvalidation (LOO–CV) of the best linear models with n = 1, ..., 18 topo-
logical indices. For R2, R2

CV and F the maximum values are underlined, in
the other columns the minimum values are marked.

R2 necessarily grows with increasing number of descriptors n, thus R2 is
not suited for the selection of a particular model. R2

CV achieves its maximum
for n = 12. However, 12 descriptors certainly are too many for 50 observa-
tions. Such a model would surely be overfitted. For the same reason also the
model with minimum S including n = 14 descriptors should not be chosen
for prediction.

A reasonable choice could be the model with n = 6 descriptors, supported
by the argument that SCV reaches its minimum. In [70] the difference SCV−S
is mentioned as a measurement for the stability of a QSPR. This reasoning
would suggest the model with n = 4 descriptors. This choice would be
supported by the minimum difference between R2 and R2

CV . But also with
n = 3 descriptors good characteristics are obtained. Especially F is maximal
for this model.

Figure 5 shows experimental and calculated BP for this model. Addition-
ally predictions obtained by LOO–CV are included. The good correlation
between experimental and calculated values can even be recognized visually,
and especially the high consistence of predictions obtained by resubstitution
and crosssvalidation.

Altogether there are 75 constitutional isomers with molecular formula
C10H22. These can be generated using MOLGEN within fractions of a sec-
ond. Applying our canonical form the 50 structures of the real library can be
identified automatically. We call the remaining 25 isomers the purely virtual
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BP 2χv 1χv IC1 CIC1 SIC1
0χv 3χv mwc(2) mwc(4) W MTI

BP 1.000 0.679 0.587 0.513 0.513 0.513 0.485 0.478 0.447 0.290 0.254 0.237
2χv 0.679 1.000 0.975 0.297 0.297 0.297 0.892 0.054 0.896 0.768 0.586 0.558
1χv 0.587 0.975 1.000 0.302 0.302 0.302 0.970 0.163 0.964 0.876 0.732 0.708
IC1 0.513 0.297 0.302 1.000 1.000 1.000 0.310 0.042 0.272 0.222 0.283 0.281
CIC1 0.513 0.297 0.302 1.000 1.000 1.000 0.310 0.042 0.272 0.222 0.283 0.281
SIC1 0.513 0.297 0.302 1.000 1.000 1.000 0.310 0.042 0.272 0.222 0.283 0.281
0χv 0.485 0.892 0.970 0.310 0.310 0.310 1.000 0.371 0.986 0.951 0.867 0.850
3χv 0.478 0.054 0.163 0.042 0.042 0.042 0.371 1.000 0.368 0.539 0.641 0.654

mwc(2) 0.447 0.896 0.964 0.272 0.272 0.272 0.986 0.368 1.000 0.970 0.862 0.844

mwc(4) 0.290 0.768 0.876 0.222 0.222 0.222 0.951 0.539 0.970 1.000 0.943 0.931
W 0.254 0.586 0.732 0.283 0.283 0.283 0.867 0.641 0.862 0.943 1.000 0.999
MTI 0.237 0.558 0.708 0.281 0.281 0.281 0.850 0.654 0.844 0.931 0.999 1.000

mwc(6) 0.202 0.710 0.831 0.180 0.180 0.180 0.921 0.602 0.945 0.995 0.948 0.939
λA
1 0.196 0.628 0.762 0.245 0.245 0.245 0.875 0.644 0.898 0.969 0.969 0.964

mwc(3) 0.175 0.680 0.818 0.195 0.195 0.195 0.922 0.665 0.932 0.986 0.954 0.945

mwc(5) 0.142 0.655 0.794 0.172 0.172 0.172 0.902 0.675 0.919 0.983 0.955 0.947
J 0.141 0.553 0.707 0.195 0.195 0.195 0.848 0.696 0.853 0.949 0.990 0.989

mwc(8) 0.140 0.675 0.803 0.146 0.146 0.146 0.899 0.635 0.926 0.987 0.940 0.932

mwc(7) 0.105 0.637 0.777 0.144 0.144 0.144 0.885 0.684 0.908 0.977 0.945 0.938
twc 0.097 0.642 0.779 0.131 0.131 0.131 0.883 0.674 0.909 0.978 0.937 0.930
IC2 0.002 0.459 0.500 0.594 0.594 0.594 0.511 0.260 0.540 0.551 0.435 0.423
CIC2 0.002 0.459 0.500 0.594 0.594 0.594 0.511 0.260 0.540 0.551 0.435 0.423
SIC2 0.002 0.459 0.500 0.594 0.594 0.594 0.511 0.260 0.540 0.551 0.435 0.423

Table 2: Part of the sign–suppressed correlation matrix for BP and topolog-
ical indices for the real library of decanes

n R2 R2
CV R2−R2

CV S SCV SCV −S F

1 0.46101 0.40131 0.059698 5.5019 5.7986 0.29669 41.06
2 0.89336 0.87999 0.013366 2.4732 2.6236 0.15042 196.87
3 0.93721 0.92689 0.010325 1.9183 2.0700 0.15172 228.87
4 0.95011 0.94126 0.008856 1.7287 1.8759 0.14718 214.27
5 0.95814 0.94709 0.011048 1.6015 1.8005 0.19896 201.42
6 0.96339 0.95022 0.013176 1.5149 1.7666 0.25173 188.62
7 0.96450 0.95043 0.014074 1.5095 1.7838 0.27431 163.02
8 0.96520 0.94761 0.017590 1.5127 1.8561 0.34331 142.13
9 0.96686 0.94794 0.018922 1.4944 1.8731 0.37868 129.67
10 0.97045 0.95468 0.015764 1.4292 1.7699 0.34062 128.07
11 0.97151 0.95542 0.016090 1.4216 1.7783 0.35671 117.81
12 0.97275 0.95591 0.016840 1.4092 1.7924 0.38323 110.05
13 0.97304 0.95294 0.020097 1.4209 1.8772 0.45629 99.94
14 0.97424 0.95061 0.023625 1.4087 1.9504 0.54171 94.53
15 0.97426 0.94917 0.025088 1.4287 2.0075 0.57889 85.79
16 0.97438 0.94563 0.028750 1.4468 2.1075 0.66078 78.43
17 0.97439 0.94191 0.032484 1.4688 2.2122 0.74343 71.63
18 0.97439 0.94191 0.032484 1.4923 2.2476 0.75532 65.53

Table 3: Characteristics of the best linear models with n descriptors for BP
of decanes
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Figure 5: Experimental vs calculated BP (3-descriptor model)
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Figure 6: Purely virtual library of decanes with predicted BP
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library. For these remaining compounds there existed no data about experi-
mental BP in the Beilstein registry. In Figure 6 we give predictions for these
decanes, calculated by the 3-descriptor model.

5 Generation of Stereoisomers

The first approach to computer-based generation of stereoisomers is due to
Nourse et al ([27, 28, 3], 1979), based on the notion of stereocenter. The
orientations of the four neighbors of each stereocenter describe the configu-
ration of a molecule, and Nourse provided algorithms to identify all potential
stereocenters and to systematically change their orientation, in order to gen-
erate all possible configurational stereoisomers up to symmetry. This method
was implemented as CONGEN/STEREO.

In 1992, Zlatina and Elyashberg [71] provided an algorithm to obtain
approximate 3D coordinates for the computed configurations, based on a
given conformation of one isomer. The expert system RASTR for molecular
elucidation contains these algorithms.

Wieland enriched Nourse’s approach by group theoretic aspects (stabilizer
chains were used for storing the automorphism group; orderly generation)
and realized it in MOLGEN in 1994 [72, 73].

These implementations are very efficient and in many cases all stereoiso-
mers are generated. However, depending entirely on the notion of the stereo-
center, the approach has its limitations. First, striving not to miss any stere-
ocenter, the algorithm is sometimes too generous in attributing the property
of a stereocenter to an atom. This often results in many more stereocenters
than a chemist would accept, and thus in excess stereoisomers. These have
to be removed by special restrictions [3]. Second, the algorithm is unable
to detect stereoisomerism that is not formally due to the presence of stereo-
centers. For example, chirality and thus the existence of two enantiomers is
not detected in the [2.2]paracyclophanecarboxylic acid and the dichloroben-
zophenanthrene shown here:

COOH

Cl Cl
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A more general approach, even allowing the generation of conformers,
comes from the idea of Dreiding and Dress [29, 30], who used chirotopes (also
known as oriented matroids) as a tool for describing conformations. Similar
ideas are due to Klin, Tratch and Zefirov [74, 75], who used their approach
especially in order to examine chirality of molecules [76] and to generate
reaction types [77]. In Bayreuth, work is ongoing to develop a stereoisomer
and conformer generator based on the chirotope approach [32].

The difference between the use of chirotopes and Nourse’s approach is
that not only the orientations of the four neighbor atoms of a stereocenter
are considered, but orientations of potentially any four atoms can distinguish
stereoisomers. Thus, we may consider the chirotope approach as a general-
ization of Nourse’s approach.

As it is impossible to give a comprehensive overview on this topic within
the available space, we give a very short introduction with a small example,
and refer to a forthcoming article addressing the topic in more detail. For
the mathematical background of chirotopes and oriented matroids, the book
[78] can be recommended.

Consider a set of points in space. To any sequence of four points an ori-
entation (positive, negative, or zero if the 4 points are coplanar) is assigned.
Using the well-known right hand rule, the orientation may be determined
even manually. Further, we can assign to any set of n numbered points an
orientation function χ : n4 → {0,±1} which denotes the orientation of each
quadruple of points thereof. As χ is alternating, it suffices to specify the
function values of all sorted quadruples. Using a suitable order on the set of
all sorted quadruples, say the reverse lexical order, we can write an orienta-
tion function χ as the sequence of its function values. For example, here is
an orientation function for 6 points:

12
34
12

35
12

45
13

45
23

45
12

36
12

46
13

46
23

46
12

56
13

56
23

56
14

56
24

56
34

56

χ = ++0 −−++0 −++0 +++

Orientation functions fulfill an oriented version of the base exchange ax-
iom, the so called binary Grassmann-Plücker relations: For any two quadru-
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ples ~a = (a0, a1, a2, a3),~b = (b0, b1, b2, b3) ∈ n4, the following holds:

χ(~a) · χ(~b) = 1 =⇒
∃ i ∈ {0, . . . , 3} : χ(bi, a1, a2, a3) · χ(b0, . . . , a0, . . .

↑
ith position

, b3) = 1 . (GP)

In general, the alternating non-trivial (i.e. not constantly zero) functions
χ : n4 → {0,±1} fulfilling (GP) are called chirotopes (of rank 4). Thus, the
orientation function of any sequence of points in 3D space (not all in one
plane) is a chirotope.

Note that not every chirotope is an orientation function. We call a chi-
rotope which is the orientation function of a set of points affinely realizable.
The decision, whether a chirotope is affinely realizable or not, and to find
a realization, is a problem shown to be NP-hard. Nevertheless, the more
general theory of oriented matroids allows some necessary tests for affine re-
alizability. Finally, we call the chirotope uniform if it has no zero function
values.

A generator for chirotopes using the general generation techniques de-
scribed above was developed by one of the authors [32]. It can serve as
generator of conformations of molecular structures. We demonstrate this on
the example of cyclohexane:

H
H

H
H

HH

H
H

H
H

H H

The molecule has 6 non-hydrogen atoms, so we generate chirotopes over 6
elements. In order to avoid doublets, we have to consider the automorphism
group of the molecular graph, which is the dihedral group with 12 elements
(this is equivalent to the symmetry group D6h of an assumed plane cyclohex-
ane). Using this as acting group on the set of chirotopes, all generated orbit
representatives will lead to essentially different conformations of the molecule
(provided the chirotope in question is affinely realizable). In order to reduce
the complexity of the problem, we assume that no four atoms are coplanar,
concentrating in this way to uniform chirotopes only. (Our assumption is not
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really a restriction, because we could move one atom a little bit out of the
plane of three other atoms, if necessary.) This way we get 386 chirotopes.
The first few of them are listed below.

12
34
12

35
12

45
13

45
23

45
12

36
12

46
13

46
23

46
12

56
13

56
23

56
14

56
24

56
34

56

+++++++++++++++
++++++++++++++−
+++++++++++++−−
++++++++++++−++
++++++++++++−−+

...

This amount is quite a lot for such a small example. By giving further
restrictions to the generator which will be described in a forthcoming article,
this number can be reduced. The main simplification is the following, also
giving a lot of freedom in adjusting the level of detail in our investigations:
As not each orientation of a quadruple of atoms is of same importance for
conformational analysis, we can select a few relevant quadruples and identify
all chirotopes that do not differ on the selected quadruples. This way, we
get classes of chirotopes, identified by the orientations on the selected set of
quadruples, i.e. by a partially defined chirotope. If we choose for example
to consider only the orientations of quadruples of atoms forming a chain,
i.e. if we analyse the conformation of all butane substructures in cyclohexane
only, we can reduce the set of generated structures to 13 partially defined
chirotopes:

12
34
12

35
12

45
13

45
23

45
12

36
12

46
13

46
23

46
12

56
13

56
23

56
14

56
24

56
34

56

+ ++ + + +
+ ++ + + −
+ ++ + − +
+ ++ + − −
+ ++ − + +
+ ++ − + −
+ ++ − − +

12
34
12

35
12

45
13

45
23

45
12

36
12

46
13

46
23

46
12

56
13

56
23

56
14

56
24

56
34

56

+ +− + − +
+ −+ + + +
+ −+ + + −
+ −+ − + −
+ −+ − − −
− −+ − + −

So far, we did not consider coordinates at all, and all our computations
used discrete mathematics only. The remaining part is to try to find for each
of the generated (partially defined) chirotopes a conformation of cyclohexane
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fulfilling the prescribed orientations. This was done by restricted optimiza-
tion of an energy function. We used a very simple energy function similar
to MM2, and the prescribed orientations were formulated as restrictions to
the optimizer. This way, we found conformations for 7 of the 13 generated
chirotopes. For only 3 of these the optimization process found a local mini-
mum. The other conformations could have been optimized further, but not
without injuring one of the prescribed orientations, and so we ignored them.
The remaining 3 conformations were exactly what we expected: The chair
form and two enantiomeric twist forms.

++++-- +-++++ +-+---

Note that restricted optimization is not guaranteed to find an optimum,
even if it exists. As already mentioned, the exact decision on affine realiz-
ability of chirotopes and of finding a conformation is a very hard problem.
Further research has to be done.

There is also the possibility to generate chirotopes up to negation, leading
to a generation of conformations where enantiomers are considered equal. In
the example of cyclohexane, this way we get two conformations, the chair
and a twist form.

6 Problems

6.1 Aromaticity

Although powerful generators of molecular formulae have been developed,
there remain serious problems. For example the phenomenon of aromaticity
shows that in aromatic rings it is not pairs of atoms but all atoms in the whole
ring that interact. So we possibly should go from graphs to hypergraphs,
which may also be necessary in order to cover compounds such as metal
complexes. In hypergraphs a hyperedge consists of a subset of the set of
vertices which does not need to be a 2–element subset. An aromatic ring
can be considered as such a hyperedge. This new hypergraph approach is
described in [79, 80]. It remains to answer the question: Which subsets can
interact? Another problem of this approach is that it increases the complexity
of calculations. At least in the construction of t–designs some experience has
been gathered on constructing systems of subsets, see also [81].
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6.2 Patents in Chemistry

What should be done right now is the following (which needs an exten-
sion of the present generators of molecular structures to recursively define
molecules):

Generate patent libraries, correponding to Markush formulae, in
such a way that compounds in the libraries are generated in a
canonical form, so that two libraries can be searched for overlap.

For example, the library of [82]

(CH2)
Cl

OH

R1

R2

R3

m

R1 : CH3, C2H5

R2 : alkyl (1–6 C atoms)
R3 : NH2

m : 1–3

should be compared with, say,
R1

R2

R3

R4

R5
R1 : CH3, C2H5, OH
R2 : alkyl (1–6 C atoms)
R3 : OH, OCH3, OC2H5, CH3, C2H5

R4 : OH, CH2Cl, NH2

R5 : H, CH3, C2H5, NH2

MOLGEN generates 33 alkyl residues for R2. These 33 structures are stored
in a separate library for R2 that is part of the input for MOLGEN–COMB.
MOLGEN–COMB generates libraries of sizes

396 and 5939,

respectively. Note that one size is 5939 and not 5940, as would naively be
expected. Due to symmetry of the benzene skeleton, the compounds with

R1 = OH, R2 = C2H5, R
3 = CH3, R

4 = OH, R5 = H

and
R1 = OH, R2 = CH3, R

3 = C2H5, R
4 = OH, R5 = H
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are identical, as is easily found by the program. Moreover, since the files of
these libraries are in canonical form we get immediately the overlap:

Cl

NH2

OH

Cl

NH2

OH

Cl

NH2

OH

Cl

NH2

OH

As a rule, Markush formulae appearing in chemistry patents are much more
complicated, containing variable groups on several nested levels. Therefore
real life problems in this field are much more difficult to solve.
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