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Several variants of randomization procedures were c ompared as a tool in 

validation of multilinear regression (MLR) QSAR equ ations that are 

obtained by descriptor selection. Y-randomization, a method formerly said 

to be probably the most powerful validation  procedure , was found to be 

overoptimistic. The statistical significance of a n ew MLR QSAR model 

should be checked by comparing its measure of fit t o the average measure 

of fit of best random pseudomodels that are obtaine d using random 

pseudodescriptors instead of the original descripto rs and applying 

descriptor selection as in building the original mo del. Application of 

this criterion to several recently published MLR QS AR equations 

identified dubious ones. Some progress also is repo rted towards the goal 

of obtaining the mean best r 2 of random pseudomodels by calculation 

rather than by tedious multiple simulations on rand om number variables. 

 

                              INTRODUCTION 

    Whenever in QSAR model building a “best” combin ation of a few 

descriptors is selected from a descriptor pool in o rder to best fit given 

data, there is an enhanced risk of chance correlati on, as was pointed out 

by Topliss et al.  in the 1970s. 1,2  At that time, few molecular descriptors 

were available to select from, so that in QSPR/QSAR  work chance 

correlation was a minor risk. In 1991, Wold stated the problem: 3 

„… if we have sufficiently many structure descripto r variables to select 

from we can make a model fit data very closely even  with few terms, 

provided that they are selected according to their apparent contribution 

to the fit. And this even if the variables we choos e from are completely 

random and have nothing whatsoever to do with the c urrent problem!” 

At present, with several computer programs availabl e that routinely 

calculate hundreds or even thousands of molecular d escriptors and then 
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automatically select a “best” subset from these, 4,5,6  the problem has 

become urgent. A model may be useful for prediction  or understanding only 

if it describes the given data better than chance, i.e. if it is 

statistically significant. Therefore every scientis t using descriptor 

selection should be interested in the question How well could my target 

data be fitted by pure chance, i.e. by selecting th e “best” combination 

of a few (m) out of many (M) random pseudodescripto rs?  (question 1). 

     In order to quantify the problem (now called s election bias) and to 

obtain a critical quantity to assess multilinear re gression (MLR) models 

obtained by descriptor selection, Livingstone and S alt recently performed 

computer experiments of fitting random number respo nse by random number 

descriptors for various combinations of the numbers  of compounds ( n) and 

of descriptors in a MLR model ( m) and in the descriptor pool ( M). 7 To 

enable interpolations for other ( n, m, M)-tuples they described their 

experimental results as a highly nonlinear equation  for n 
�

 100, m 
�

 8, 

and M 
�

 100. So for many MLR modeling problems such as our s, 8,9,10  their 

equation is of little help. 

    A popular tool used by researchers to protect t hemselves against the 

risk of chance correlation has been y-randomization  (also called y-

scrambling 11 or response randomization 12), a method said to be “ probably 

the most powerful  validation procedure ”. 11 By validation developers try 

to convince themselves of a model’s properties such  as statistical 

significance, robustness, predictive ability, etc. 12,13  While other 

important validation methods such as crossvalidatio n and training 

set/test set partitioning were discussed in detail recently, 13-16  y-

randomization is often applied but did not attract much attention 

itself. 17 It is mentioned, without any details given, in the  books 

written by Harrell 18a and by Manly, 18b but not at all in the potentially 

relevant book by Miller. 19 

    Y-randomization was used early, e.g., by Klopma n and Kalos. 20 It was 

nicely described in a paper by Wold and Eriksson: 21 

“The first of the four tools is based on repetitive  randomization of the 

response data (Y) of N compounds in the training se t. Thus, a random 

number generator is used to allocate the integers b etween 1 and N to 

sequences of N numbers. In each cycle, the resultin g arrangement of 

random integers is employed in order to reorder the  Y data – leaving the 

X data intact - and then the full data analysis is carried out on these 

scrambled data. Every run will yield estimates of R 2 and Q 2, which are 
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recorded. If in each case the scrambled data give m uch lower R 2 and Q 2 

values than the original data, then one can feel co nfident about the  

relevance of the “real” QSAR model.”   

The authors did not give a reference, nor did they provide a mathematical 

justification for the procedure. Note in the quotat ion the important 

phrase  “and then the full data analysis is carried out”. This includes 

descriptor selection starting from the full pool of  initial descriptors  

for each y-randomized run. Occasionally in the lite rature y-randomized 

procedures are encountered that do not include desc riptor selection, 

instead they use the m descriptors of the final model to describe the 

scrambled y data, thus at all ignoring the problem.  This misunderstanding 

of y-randomization results in a very poor fit for t he random models, 

giving an extremely overoptimistic impression of th e original model. In 

the Results section this is illustrated in detail. 

    In more recent work Karki and Kulkarni describe d y-randomization and 

their conclusion from it as follows: 22 

“The test was done by (1) repeatedly permuting the activity values of the 

data set, (2) using the permuted values to generate  QSAR models and (3) 

comparing the resulting scores with the score of th e original QSAR model 

generated from non-randomized activity values. If t he original QSAR model 

is statistically significant, its score should be s ignificantly better 

than those from permuted data. The r 2 values for 50 trials based on 

permuted data are shown in Fig. 4. The r 2 value of the original model was 

much higher than any of the trials using permuted d ata. Hence, model C is 

statistically significant and robust.” 23  

Again, no reference nor justification was given in this paper. 

    Since a particular permutation of y values may be close to the 

original arrangement, a single or a few out of many  y-permutation runs 

may result in a rather high fit without saying that  the model under 

scrutiny is spurious. 21,24  Therefore it is occasionally difficult to 

decide from the outcome of y-randomization whether or not a model has 

passed the test. A quantitative evaluation of the t est result, in the 

framework of standard statistical hypothesis testin g, was given 

recently. 25 

 

    By the above, y-randomization is an attempt to observe the action of 

chance in fitting given data. This is done by delib erately destroying the 

connection between target variable y and independen t variables x (in 
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QSPR/QSAR: molecular descriptors) by randomly permu ting the y data, 

leaving all x data untouched, and performing the wh ole model building 

procedure as it would be done for real y data. Y-ra ndomization asks and 

answers the question How well could random scramblings of my target data  

be fitted by selecting the “best” combination of m out of my M 

descriptors?  (question 2). Note that this question differs from  question 

1 asked above. Other possible variations are How well could random data 

be fitted by selecting the “best” combination of m out of my M 

descriptors?  (question 3); How well could random data be fitted by 

selecting the “best” combination of m out of M rand om pseudodescriptors? 

(question 4); and How well could random scramblings of my target data  be 

fitted by selecting the “best” combination of m out  of M random 

pseudodescriptors? (question 5).  There is no a priori  reason to expect 

the answers of these five questions to be identical . Below we report on 

our computer experiments addressing these questions , whereby a picture 

was obtained of which r 2 value to expect for given ( n, m, M) by the action 

of chance alone. This number obviously can be used as a critical value, 

in that a statistically significant MLR model has t o considerably surpass 

it. In the second part of this article we use such information to assess 

some recently published MLR QSAR equations. In the third part a 

misunderstanding of the y-randomization procedure i s clarified. In the 

fourth part, in order to obviate tedious multiple c omputer runs on random 

number variables, we introduce a small program to c alculate lower and 

upper bounds for the mean best random r 2, the r 2 expected for the “best” 

model obtained by descriptor selection from a pool of random 

pseudodescriptors in a ( n, m, M) MLR situation .   

    For simplicity and transparency, here y-randomizati on is considered 

in the context of multilinear regression (MLR) only , though it was used 

in connection with many other QSAR methods. 4,13,25-27   

 

                                METHODS 

    Data sets.  We extracted from the literature data sets contain ing, 

along with the final MLR model and the identities a nd target activities 

of n compounds, the values of all M descriptors in the pool for all 

compounds. While such data sets are rare, we found the following three. 

    Kier and Hall reported an MLR model of the hall ucinogenic activity of 

23 substituted amphetamines, where three descriptor s were selected from a 

pool of 18 (data set 1). 28 
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    The so-called Selwood data set consists of 16 a ntifilarial antimycin 

analogs together with their activities and the valu es of 53 descriptors 

(data set 2). 29 

    Prabhakar et al.  described the aldose reductase inhibitory activity  

of 48 flavones by MLR models containing between 3 a nd 7 descriptors from 

a pool of 158 (data set 3). 30 

    Another few data sets including values of all M descriptors were 

available to us from our previous work. Thus, we re cently proposed a MLR 

model for the binding affinity of 144 PPAR γ ligands, containing 10 

descriptors selected from a 230-descriptor pool (da ta set 4). 10 In the 

same work, the gene transactivation activity of 150  such ligands was 

described by a MLR model on 14 out of 229 descripto rs (data set 5). 

    Earlier, we described the boiling points of 507  C 1 – C 4 haloalkanes 

by MLR models using 6 or 7 descriptors from a pool of 249 (data set 6), 8 

and the boiling points of 82 C 1 – C 4 fluoroalkanes using 6 or 7 

descriptors out of 209 (data set 7). 9 

    For the following data sets values of all descr iptors in the pool are 

not available. 

    The COX-2 inhibitor activities of 24 terphenyls  (data set 8) and of 

15 4,5-diphenyl-2-trifluoromethylimidazoles (data s et 9) were modeled 

using 4 and 3 descriptors, respectively, by Hansch et al .. 31 The 

descriptor pool consisted of at least 14 variables in both cases. 

    The antibacterial activities of 60 oxazolidinones ( data set 10) were 

treated by Karki and Kulkarni, 22 and later by Katritzky et al .. 6 

    The antiplasmodial activities of 16 cinnamic ac id derivatives (data 

set 11) were described as a 3-descriptor equation b y Gupta et al .. 32 The 

same research group treated binding to PPAR γ of 16 2-benzoylaminobenzoic 

acids (data set 12) and gene transactivation effect ed thereby (data set 

13), as well as binding of a subset of these to PPA R� (data set 14). 33 

    Prabhakar et al. treated the antimycobacterial activity of two series 

of functionalized alkenols (data sets 15 and 16). 34 

 

    Descriptor selection procedure . In MLR, for a given data set 

consisting of a target variable and M descriptors for n compounds, that 

combination of m descriptors ( m < M) is sought that results in the best 

fit among all possible m-descriptor models. Running through all  

combinations usually is too time-consuming, therefo re several approximate 

methods have been proposed for this purpose (forwar d inclusion, backward 
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elimination, stepwise methods, genetic algorithms, etc. 35), but none is 

guaranteed to always find the very best combination . The “best” (highest 

r 2) model found for a given data set may differ from method to method. So 

a real QSAR model should be compared to pseudomodel s based on random 

numbers preferably using the same descriptor select ion procedure. We 

restricted ourselves to the step-up procedure as im plemented in MOLGEN-

QSPR.8,9  This procedure calculates all 1-descriptor models,  combines the 

best l  of these each with all other descriptors one by on e, takes the 

best l  of these 2-descriptor models to combine each with a third 

descriptor, and so on. The parameter l  was set to 1000 in this work. 

 

    Random numbers .  Pseudorandom integers uniformly distributed betwee n 0 

and 32767 (2 15-1) were generated by the C function rand(), using the 

system time as random argument for srand() in order  to obtain a new 

sequence of pseudorandom numbers in every run. 36 For use as random 

pseudodescriptors these numbers were taken as such,  for use as random 

pseudoresponse they were scaled to the range of ori ginal response data. 

To obtain random permutations, the C++ function ran dom_shuffle() was 

used, again based on pseudorandom integers obtained  from rand() and 

seeded by srand() and the system time. 

 

    Random number experiments . For each data set, for its particular 

triple ( n, m, M) a “best” MLR pseudomodel was established using th e MOLGEN-

QSPR step-up descriptor selection procedure, either  after replacing the 

target variable by a random permutation of the give n values, or after 

replacing original variables by random number pseud ovariables, in five 

different modes that correspond to the five questio ns raised above:  

- Mode 1, original target variable, descriptors rep laced by M 

pseudodescriptors made of random numbers; 

- mode 2, target variable randomly permuted, M original descriptors (y-

randomization); 

- mode 3, target variable replaced by random number s, M original 

descriptors; 

- mode 4, target variable replaced by random number s, descriptors 

replaced by M pseudodescriptors made of random numbers; 

- mode 5, target variable randomly permuted, descri ptors replaced by M 

pseudodescriptors made of random numbers. 
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For each mode, this procedure was repeated it  times ( it  
�
 25), each time 

using a fresh set of random numbers. In each repeti tion the highest r 2 

value obtained by descriptor selection was recorded  (best random r 2), and 

the mean best random r 2 and its standard deviation were calculated by 

averaging over it  repetitions. For brevity, we prefer the term “mean  best 

random r 2” over the more exact “mean highest random r 2”. 

 

                              RESULTS 

1. Computer simulations of chance correlation 

    The results of our random experiments are repor ted in Tables 1 - 7, 

where for several ( n, m, M) combinations from literature data sets 

experimental mean best random r 2 values (upright) are given together with 

the corresponding standard deviations (italic), sep arately for the five 

modes. 

 

                                (Table 1) 

 

    Table 1 contains results for data set 1. Compar ison of the first four 

lines shows the scatter due to random. In the next three lines the number 

of repetitions it  was varied. Neither r 2 nor standard deviations differ 

substantially between it = 25 and it  = 25000. We conclude from this 

result that for our purposes it  = 25 is sufficient, though of course 

higher it  values are desirable.  

    The foremost result, apparent in all lines of T able 1 (and in Tables 

2 - 4 as well, see below) is the following: Mean be st random r 2 values 

obtained from mode 2 and mode 3 (which agree within  the limits of random 

scatter) are lower by some margin than those from m odes 1, 4, and 5 

(which again agree).  

    We hypothesized that this difference is due to the original 

descriptors (used in modes 2 and 3 only) being high ly intercorrelated. In 

fact, the 18 descriptors in data set 1 are six conn ectivity � indices 

along with their squares and reciprocals. 

To test this we replaced in data set 1 the original  descriptors by either 

18 highly intercorrelated topological indices (data  set 1A) or by 18 

random pseudodescriptors (data set 1B) and repeated  the whole series of 

experiments. It was expected that the result for da ta set 1A would be 

similar to that of data set 1, while in data set 1B  the difference 

between the modes should vanish. This is exactly wh at  happened (see last 
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lines of Table 1). Similar results were obtained fo r data sets 2, 8 and 

9, see below. 

 

                               (Table 2) 

 

    Results for data set 2 ( n = 16) are shown in Table 2, all obtained 

with it  = 250. In the original paper the initial set of 53  highly 

intercorrelated descriptors was narrowed down to 23  weakly 

intercorrelated ones by removing one descriptor fro m each pair 

intercorrelated higher than r  = 0.75. Out of these 23, 10 descriptors 

were selected according to their correlation with t he target variable, 

and from these 1-, 2-, and 3-descriptor models were  selected. 29 We 

therefore treated all such (16, m, M) triples.  

    The first thing to notice in Table 2 is the mag nitude of the entries. 

Thus, for 16 observations (compounds), selection of  the best combination 

of 3 out of 53 descriptors leads to r 2 = 0.79 on average even if all 

descriptors are purely random. This is true for the  original response 

data (mode 1), for random pseudoresponse (mode 4), and for randomly 

permuted response (mode 5). Obviously, selection bi as is everything but 

negligible. 

    In Table 2, r 2 increases with increasing m for constant n and M, and 

with increasing M for constant n and m, as it should. Again, r 2 values 

from modes 2 and 3 are lower than from modes 1, 4, and 5. The difference 

is large in the set of 53 highly intercorrelated de scriptors (14 to 19%), 

and smaller in the subset of 23 weakly intercorrela ted descriptors (3 to 

7%), confirming our hypothesis on the origin of thi s difference. 

    Again, when instead of the original descriptors  random 

pseudodescriptors were entered from the beginning, the difference between 

results of modes 2/3 and modes 1/4/5 vanished (not shown in Table 2). 

 

                                (Table 3) 

 

    Table 3 shows our results for data set 3 ( n = 48, M = 158, it  = 25 

throughout). In the original paper 3- through 7-des criptor models were 

given, we therefore treated the corresponding (48, m,158)-triples. 

    To test the influence of n for constant m and M, we eliminated the 

last 16 compounds from data set 3 and repeated all experiments for the 
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remaining 32. As expected, all mean best random r 2 values increased with 

this decrease in n. 

 

                               (Table 4) 

 

    Table 4 shows the results for data sets 4 - 7, it  = 25 throughout. In 

the original paper, 10 a 129-compound subset (training set) of the 

complete 144-compound set was treated as well, and accordingly here 

experiments for (129,10,230) are included. Compared  to the previous data 

sets, m and M are considerably increased here, but their influen ce is 

counterbalanced by increased n, so that for data sets 4 and 5 the 

resulting mean best random r 2 values are in the low to middle range 

again. For data set 6, high n = 507 together with low m = 6 or 7 cause 

mean best random r 2 to drop to very low numbers even for rather high M = 

249. 

 

    We summarize the content of Tables 1 – 4 as fol lows: 

i) Mean best random r 2 values increase with increasing m and M and with 

decreasing n. 

ii) Permuted response values or random number pseud oresponse are fitted 

equally well on average by best combinations of the  original descriptors 

(mode 2 and mode 3). 

iii) Original response values, random number pseudo response, or randomly 

permuted response are fitted equally well on averag e by best combinations 

of random pseudodescriptors (modes 1, 4, and 5). 

iv) Best combinations of original descriptors (mode s 2 and 3) are less 

successful on average in establishing chance correl ations than best 

combinations of random pseudodescriptors (modes 1, 4, and 5, compare in 

particular mode 3 to mode 4, and mode 2 to mode 5).  This is due to 

intercorrelation usually found among real descripto rs.  

 

2. Application to published QSAR equations. 

    Assuming a normal distribution of best random r 2 values for a given 

( n, m, M) tuple, the difference between r 2 of an original MLR model and 

mean best random r 2 (= mean highest r 2 of pseudomodels based on random 

numbers) should roughly be � 2.4 standard deviations for significance on 

the 1% level, � 3 standard deviations for the 0.1% level, etc.. 
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    Data set 1 . The published r 2 of the original 3-descriptor model 28 

(0.846) is higher than the mean best random r 2 for 23 compounds and 3 out 

of 18 descriptors (0.4291, standard deviation 0.104 8, mode 1, Table 1) by 

four standard deviations. The original equation 1 t herefore is safe in 

the sense that it fits the data significantly bette r than chance 

correlations. Y-randomization leads to the same con clusion but 

overestimates the safety margin, due to descriptor intercorrelation. 

    Data set 2.  In the original paper 1-, 2-, and 3-descriptor equ ations 

are given having r 2 = 0.49, 0.74, and 0.81, respectively. 29 Had these 

equations been obtained by descriptor selection fro m the original pool of 

53 descriptors, the differences between r 2 and mean best random r 2 would 

be 1.15, 1.39, and 0.37 standard deviations, respec tively (mode 1, Table 

2), and the equations therefore could not be consid ered significant. 

However, the equations were obtained by descriptor selection from the 

pool of 23. The r 2 distances from mean best random r 2 (mode 1, Table 2) 

are 1.72, 2.09, and 1.48 standard deviations, respe ctively, so that the 

2-descriptor equation, if any, is close to what may  be considered 

significant. These conclusions completely agree wit h those of Livingstone 

and Salt. 7 Y-randomization leads to the same conclusions, whi ch at least 

for the M = 23 cases is no surprise since low descriptor int ercorrelation 

renders modes 1 and 2 almost equivalent (Table 2). 

    Data set 3 . In the original paper MLR models containing 3, 4,  and 5 

descriptors are given with r 2 = 0.608, 0.682, and 0.667, respectively. 30 

These were found by descriptor selection that was r estricted by some 

filters, from a pool of 158 descriptors. The real r 2 values are higher 

than the respective mean best random r 2 (from unrestricted descriptor 

selection) by 3.58, 4.75, and 2.40 standard deviati ons (mode 1, Table 3). 

Thus while the first two equations are safe, the 5- descriptor equation 

would be dubious if obtained by free selection amon g descriptors. Y-

randomization now performed by us did not detect th e problem with the 5-

descriptor equation. The original equations were ob tained in a procedure 

that prohibited simultaneous appearance in the same  model of descriptors 

intercorrelated by r  > 0.3, which in a similar manner as in data set 2 

may have efficiently diminished the effective numbe r of descriptors to 

select from. 

    Finally, in the original paper a 6- and a 7-des criptor model are 

proposed ( r 2 = 0.752 and 0.778) that formally were obtained by descriptor 

selection from a 26-descriptor pool. This pool cont ained all descriptors 
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appearing in a set of models that emerged by descri ptor selection from 

the pool of 158. Therefore random experiments using  M = 26 would be too 

optimistic here, and experiments using M = 158 (too pessimistic) resulted 

in distances of r 2 from mean best random r 2 of 2.25 and 1.34 standard 

deviations for the 6- and the 7-descriptor model, r espectively. Therefore 

the significance of these models is not beyond doub t. 

    Data set 4.  In the original paper r 2 of model m1 (binding of 144 

PPARγ ligands) is given as 0.7938, which is more than el even standard 

deviations above mean best random r 2 (mode 1, Table 4). 10 For the subset 

of 129 ligands, r 2 of model m2 is 0.7909, which likewise is more than  

eleven standard deviations above the mean best rand om r 2. Both models 

therefore are statistically significant. 

    Data set 5. For gene transactivation induced by 150 PPAR γ ligands, 

model m3 in the original paper has r 2 = 0.6487, 10 which is 4.9 standard 

deviations above mean best random r 2 (0.4524, mode 1, Table 4), so that 

the original model is considered significant. 

    Data set 6.  For the boiling points of 507 haloalkanes, a MLR m odel of 

r 2 = 0.9879 was reported in the original paper, conta ining 6 descriptors 

that were selected from a pool of 249. 8 Comparison with the mean best 

random r 2 (0.0799, standard deviation 0.0137, mode 1, Table 4) results in 

a distance of 66 standard deviations. For the 7-des criptor model the 

original r 2 is 0.9888, which is 84 standard deviations above t he mean 

best random r 2 for (507,7,249) (0.0876, standard deviation 0.0107 , Table 

4). Thus the statistical significance of both model s is beyond any doubt.  

    Data set 7.  For the boiling points of 82 fluoroalkanes, MLR mo dels 

containing 6 and 7 descriptors out of a pool of 209  descriptors have r 2 

values 0.9845 and 0.9872, respectively, 9 which are 15 and 13 standard 

deviations above the respective mean best random r 2 (mode 1, Table 4). 

Both models thus are statistically significant. 

    In all cases in Table 4, the less sensitive y-r andomization test of 

course leads to the same conclusion, but again some what overestimates 

significance.  

 

    For the following data sets mode 2 and mode 3 s imulations were 

impossible due to missing original descriptor value s. Fortunately, the 

(minimum) numbers of descriptors in the pools were given, so that we were 

able to perform mode 1, mode 4, and mode 5 simulati ons. 
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    Data sets 8 and 9 . A MLR QSAR equation for the COX-2 inhibitor 

activity of 24 substituted terphenyls (4 descriptor s) was proposed by 

Hansch et al .. 31 The COX-2 inhibitory activity of 15 substituted 4, 5-

diphenyl-2-trifluoromethylimidazoles (3 descriptors ) was also modeled 

there. The descriptor pool consisted of at least 14  variables in both 

cases. In the paper numerical values are given for the 4 and 3 

descriptors only that appear in the final models. 

 

                              (Table 5) 

 

    The original model for the terphenyls has r 2 = 0.909, more than 4 

standard deviations above the mean best random r 2 for (24,4,14)(0.43, 

mode 1, Table 5, it  = 250 throughout), so that the original model seem s 

significant at first sight. However, the compound s et initially consisted 

of 27 terphenyls, of which three were excluded as o utliers. From the data 

given, 31 the corresponding model for the 27-compound set ha s r 2 = 0.661, 

which is only 2.75 standard deviations above the mo de 1 mean best random 

r 2 for (27,4,14) (0.3841, standard deviation 0.1007, Table 5). 

    For the diphenylimidazoles the situation is sim ilar. For the original 

model r 2 = 0.885 is 2.5 standard deviations above mean best random r 2 

(0.57, mode 1, Table 5). However, two compounds had  been excluded as 

outliers, and from the data given, 31 r 2 of the corresponding model for the 

17-compound set can be calculated to be 0.7765, whi ch is only 1.9 

standard deviations above mean best random r 2 for (17,3,14) (0.5270, 

standard deviation 0.1333, Table 5). 

    The significance of both original models theref ore is not beyond 

doubt. Note that this conclusion is arrived at even  applying a very 

conservative M = 14 in both cases. Had we more realistically used  M = 25 

for the terphenyls (2 substituents, additional 11 s ubstituent 

descriptors) or for the diphenylimidazoles (substit uent position 2, 3, or 

4 differentiated, resulting in additional descripto rs), the significance 

of the original models would appear even more quest ionable, see the 

remaining mode 1 results in Table 5. In the light o f these results, a 

significance check for the other QSAR equations giv en in reference 31 

seems highly desirable. 

    Data sets 8 and 9 provided another opportunity to test our 

understanding of the difference between mode 1/4/5 and mode 2/3 results. 

Thus, the results just mentioned were obtained afte r initially filling 
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the missing descriptor values for data sets 8 (9) e ither by 10 (11) 

highly intercorrelated topological indices, or by 1 0 (11) random 

pseudodescriptors. Modes 1, 4, and 5 do not use the  initial descriptor 

values and therefore should yield identical results  for both 

alternatives. This is the case, as seen in Table 5.  Modes 2 and 3 should 

fall behind modes 1, 4, and 5 in the case of interc orrelated descriptors, 

but not in the case of noncorrelated descriptors. T his is exactly what 

happened, see entries in parentheses in Table 5. 

 

                                 (Table 6) 

 

    Data set 10 .  Karki and Kulkarni fitted by MLR the antibacterial 

activities of 50 oxazolidinones. 22 Model A in their study contains 6 

descriptors selected from a set of 34, r 2 = 0.732. Model B contains 3 

descriptors selected from the same set, r 2 = 0.603. Model C is a 4-

descriptor model of r 2 = 0.651, where the descriptors were selected from 

a pool of 10, a subset itself obtained from the 34- descriptor pool by 

descriptor selection. 22 Therefore for model C also M = 34 is most 

appropriate. Our mode 1/4/5 simulation results for these cases ( it  = 250) 

are shown in the upper part of Table 6. For all thr ee original models, 

the distance between r 2 and mean best random r 2 is > 4.5 standard 

deviations. Thus models A – C are statistically sig nificant. 

    Katritzky et al. fitted the same data, enlarged by another ten 

compounds that had been used as test set in the ear lier study, in three 

MLR equations containing 7 descriptors each that we re selected, by a 

procedure contained in CODESSA, from two large desc riptor pools (739 and 

888 descriptors) or from their union (1627 descript ors). 6 Our 

corresponding random simulation results are shown i n the lower part of 

Table 6 ( it  = 25). 

    MLR equation (1) in reference 6 contains 7 desc riptors selected from 

the 1627 descriptor pool and has r 2 = 0.820. Mode 1 simulation for 

(60,7,1627) resulted in mean best random r 2 = 0.8188 with standard 

deviation 0.0183. The distance between r 2 and mean best random r 2 is 0.07 

standard deviations (or 0.48 standard deviations, f rom another series of 

50 experiments), and the original equation therefor e does not fit the 

data significantly better than (on average) the “be st” selection of 7 out 

of 1627 random pseudodescriptors. In fact, 11 of th e 25 random 

experiments resulted in best r 2 > 0.820, with maximum 0.8571, and the 
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minimum among all 25 runs was 0.7916. Since the COD ESSA procedure 

excludes collinear descriptors, the effective numbe r of descriptors in 

the pool may have been a bit lower than 1627. On th e other hand, two of 

the compounds in data set 10 are identical (S10 and  S58), so that 

actually only 59 compounds were treated in referenc e 6. 

    In equation (3) in the same study the same acti vity data were fitted 

by a MLR model containing 7 descriptors selected fr om a subset of the 

previous one containing 888 descriptors, and r 2 = 0.795 was obtained. Our 

mode 1 simulation for (60,7,888) resulted in mean b est random r 2 = 

0.7772, standard deviation 0.0245. Thus the origina l model’s r 2 is 

nonsignificantly higher (by 0.73 standard deviation s) than what is 

produced by random on average. 

    In the same work equation (4) fits the data by means of 7 descriptors 

selected from the complement subset consisting of 7 39 descriptors  ( r 2 = 

0.731). Our mode 1 simulation for (60,7,739) result ed in mean best random 

r 2 = 0.7635, standard deviation 0.0244. Thus r 2 of the original model is 

even lower than what is obtained on average in rand om experiments. 

    Finally in reference 6 the earlier training set /test set partition 

was reproduced, and the antibacterial activity of t he 50 training set 

compounds was fitted by a MLR model (equation (5), r 2 = 0.809) made of 6 

descriptors that were selected from the set of 1627 . Mode 1 simulation 

for (50,6,1627) now gave mean best random r 2 = 0.8350, standard deviation 

0.0157. Thus again the original r 2 is even lower than what was on average 

obtained by selection among random models. 

    Taking all results for models from reference 6 together, equations 

(1) – (5) therein cannot be considered statisticall y significant, and 

interpretation of the descriptors involved apparent ly does not make much 

sense. 

    It is interesting to note that the equations in  reference 6 were 

subjected to validation procedures in the original work (leave-one-out 

crossvalidation for all models, leave one-third-out  crossvalidation for 

equation (1), predictions for a test set for equati on (5)), but their 

deficiencies went undetected thereby. This suggests  that random 

simulations cannot be replaced by these other valid ation procedures and 

therefore should always be done. Due to the lack of  original data we were 

unable to check whether y-randomization would have sufficed to detect the 

deficiencies here. 
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                                (Table 7) 

 

    Data set 11 . Antiplasmodial activities of 16 cinnamic acid 

derivatives were fitted by MLR by Gupta et al .. Seven 3-descriptor 

equations were established by descriptor selection from a pool of 33 

descriptors. The 6 equations having highest r 2 (between 0.757 and 0.706) 

were rejected for high intercorrelation of descript ors in the model or 

for low r 2
cv . The seventh equation ( r 2 = 0.689) was considered best, and 

for this model “ chance correlation <0.01 ” and “ better statistical 

significance >99% ” were claimed on the basis of conventional F value s. 32 

Bootstrapping and even predictions for a (small) ex ternal test set did 

not reveal any problems with that model. Additional ly, a randomization 

test was done (no details given), and “ chance correlation  <0.01 in the 

randomized biological activity test revealed that t he  results were not 

based on chance correlation ”. 32 Our mode 1 simulations ( it  = 250) for 

(16,3,33) resulted in mean best random r 2 = 0.7079, standard deviation 

0.0808 (see also mode 4 and 5 results, Table 7). Th us, obviously r 2 of 

the model proposed as best is lower than what resul ts from pure chance on 

average, and even the highest r 2 model in the original paper does not 

describe the data significantly better than chance.  Obviously, the effect 

of selection bias was not considered in the origina l paper, and the 

extremely overoptimistic judgement obtained thereby  was not doubted by 

the validation procedures performed including an un specified 

randomization test. 

    Data sets 12 – 14 . The equations proposed by the same group of 

researchers to describe the binding affinities to P PAR� and PPAR γ of some 

benzoylaminobenzoic acids and their transactivation  behaviour (data sets 

12 – 14) 33 suffer from the same deficiency as that for data s et 11. Our 

simulation results are likewise shown in Table 7. 

    Equation 1 in reference 33 is a 3-descriptor mo del ( M = 32) for PPAR γ 

binding of 16 compounds (data set 12). The reported  r 2 = 0.808 is higher 

than mean best random r 2 for (16,3,32) (0.7051, standard deviation 

0.0852) by 1.2 standard deviations. 

    Equation 2 is a 3-descriptor model ( M = 32) for gene transactivation 

caused by PPAR γ binding of 15 compounds (data set 13). The reporte d r 2 = 

0.750 is higher than mean best random r 2 for (15,3,32) (0.7443, standard 

deviation 0.0810) by 0.07 standard deviations.  
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    Equation 3 is a 1-descriptor model ( M = 32) for PPAR � binding of 8 

compounds (data set 14). The reported r 2 = 0.738 is higher than mode 1 

mean best random r 2 for (8,1,32) (0.5838, standard deviation 0.1289) b y 

1.2 standard deviations. 

    Thus none of these equations can be considered statistically 

significant. Nevertheless for all three equations s tatistical 

significance was claimed based on conventional F va lues in the original 

paper, and “ chance <0.001 ” was claimed based on a “ randomize biological 

activity data test ” without any details given. 

    Data sets 15 and 16 . Prabhakar et al. proposed QSAR equations for the 

antimycobacterial activity of 11 nitro/acetamido al kenols (data set 15), 

where two descriptors were selected from pools of 6 8, 96, or 288 

descriptors under some restrictions, such as pairwi se descriptor 

intercorrelation r  
�

 0.3, t  values for regression coefficients � 2.0, and 

r 2
cv  � 0.3. 34 These restrictions reduce the number of effective 

descriptors in the pool. Nevertheless r 2 = 0.748 given there for equation 

3 ( m = 2, M = 96) appears low compared to mean best random r 2 = 0.8644 

resulting from our mode 1 experiments for (11,2,96)  allowing free 

descriptor selection (Table 7). Similarly, for 11 c hloro/amino alkenols 

(data set 16) equation 5 ( m = 2, M = 96) has r 2 = 0.733, while our mode 1 

experiments resulted in mean best random r 2 = 0.8482. The situation for 

the other equations given is similar, so that close r examination seems 

advisable. Interestingly, for all models given some  randomization test 

was done in the original study (no details reported ), and in 100 

simulations per model “ none of the identified models has shown any chance  

correlation ”. 34 

 

3. Appropriate and inappropriate y-randomized proce dures 

    The discrepancy between randomization-based sig nificance claims found 

in the literature (see examples above) and our simu lation results caused 

us some concern. We suspected that inappropriate pr ocedures were applied 

in the original work in these cases. In fact, in de scriptions of y-

randomized procedures the second step, building of models for scrambled y 

data using untouched x data (original descriptors),  is often not 

detailed. In order to learn about the effect of var ious procedures, we 

subjected one and the same given random permutation  of y data derived 

from data set 4 ( n = 144, m = 10, M = 230) to three procedures, always 

using descriptors from the original pool. 
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(1) Target activity values were calculated accordin g to the exact 

original QSAR equation (original model), i.e. the s ystem was not allowed 

to adjust to the new situation that arised from y-s crambling (procedure 

1). 

(2) Target activity values were calculated accordin g to the best model 

obtainable using the descriptors from the original model, i.e. the system 

was given the freedom merely to adjust the regressi on coefficients to the 

new situation (procedure 2). 

(3) Target activity values were calculated accordin g to the “best” model 

obtained by a new “best” selection of m out of the M original descriptors 

(procedure 3). This of course is the appropriate pr ocedure if the 

original model was arrived at by selecting the “bes t” combination of m 

descriptors out of M descriptors, and this is what we understand by y-

randomization. 

    For each procedure the resulting (random) r 2 value was recorded. All 

this was repeated for 25 independent scramblings of  the y data. As shown 

in Table 8, for each single y-permutation the r 2 values arising from the 

three procedures differ widely, increasing from pro cedure 1 over 

procedure 2 to procedure 3. The same, of course, is  true for the averages 

over 25 independent y-scramblings. 

 

                               (Table 8) 

 

    While in practice procedure 1 will not be appli ed (in fact in it no 

new model is built), use of procedure 2 instead of procedure 3 (i.e. 

authors’ unawareness of selection bias) is a suffic ient explanation for 

the discrepancies. For instance, Guha and Jurs for a n = 156, m = 4, M = 

65 case in 100 y-scrambling runs obtained average r 2 = 0.02 (range from 

0.01 to 0.10) and commented that this is in close a ccordance to the 

theoretically expected value of r 2 for a model built from random 

variables. 37 Our mode 4 experiments for the same ( n, m, M) combination ( it  

= 100) gave mean best random r 2 = 0.1263, standard deviation 0.0244 

(values ranging from 0.0718 to 0.1895), wherefrom f or y-randomization 

(mode 2) a mean best random r 2 of about 0.1 is to be expected. We thank 

Dr. Guha for informing us that in their scrambling runs a fixed 

combination of descriptors was used (those of the o riginal model), i.e. 

selection bias was not accounted for. 38,39  In fact, for n = 156 and m = 4 

the expected r 2 for a random model without descriptor selection is  0.026. 
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4. Approximate estimation of mean best random r2 

    Simulations involving descriptor selection as d escribed above are 

time-consuming, particularly for high m and M. Therefore it is highly 

desirable to be able to simply calculate mean best random r 2 for each 

( n, m, M) case. Though to the best of our knowledge this pr oblem is not yet 

solved, in this section we report some progress. 

    Let S be the set of all models with m descriptors selected from M 

descriptors. There are | S| = ���
�

���
�

m

M
 such models. 

 
 

Figure 1.  Distribution functions of random r 2 values for the case 
(16,3,53). Black: Models containing three descripto rs not selected from a 
larger pool. Green and red: Upper and lower bound c urves for models 
containing three descriptors selected as best from a pool of 53 (see 
text). Short colored lines indicate the expectation  of the respective 
curve. The experimental mean best random r 2 (0.7899) is indicated by a 
blue line. 
 

    Background: A fixed model with m descriptors (n o descriptor 

selection). Under the null hypothesis (no correlation between d escriptors 

and response), for a fixed model with m descriptors the F statistic 
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is F-distributed with df 1 = m and df 2 = n – m – 1 degrees of freedom. 

Therefrom we conclude that the probability that r 2 is less or equal to 

any x  � [0,1] is 

                                              )
1

1
()(:)( 2

m

mn

x

x
FPxrPxP

−−
−

≤=≤=  

 

This is the distribution function of random r 2, shown as the black curve 

in Figure 1 for the example (16,3,53). From the F d istribution, available 

in all statistics packages, the expected mean 2r̂ (indicated as black line 

in Figure 1) can be derived either by transforming and averaging F-

distributed random numbers, or (approximately) by m eans of the first two 

moments of the F distribution: 
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   Model with best combination of m descriptors sel ected from M 

descriptors.  Let us now consider, instead of a fixed model, the  best of 

all 
���
�

���
�

m

M
 models containing m descriptors, which means the model 

exhibiting maximal r 2, denoted as r 2
max. The distribution function for r 2

max 

is 

{ } )()()()(:)( 222
max xPxrPxrPxrPxP

Si
im =≤≤≤=≤=

∈

�
   (1) 

If all models were independent in the sense of not having any descriptor 

in common (which is true only if m = 1 or m = M), we had by definition 

                                              { } ��	
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This function is depicted in Figure 1 as the red cu rve with a short red 

line indicating its expectation. Unfortunately, thi s equation does not 

hold in general, since any two models may contain u p to m – 1 descriptors 

in common. Therefore models, instead of being pairw ise independent, tend 

to be positively correlated: The more descriptors a re common to two 

models, the more similar their r 2 values will be. Accordingly, we replace 

the above equation with the inequation 
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On the other hand, inequation (1) can be refined by  the following 

consideration. We can choose a set S’ ⊆  S of ���	

	

m

M
 models with disjoint 

(and thus statistically independent) descriptor set s (where the half 

square brackets � �  denote the integer part). Thus we obtain 

{ } )()()()(
'

2 xPxPxrPxP m

M

Si
im ≤=≤≤ 
�


���

∈

�
    (3) 

 

The function ���
���

m

M

xP )( is depicted in Figure 1 as the green curve with a 

green line indicating its expectation. Combining in equations (2) and (3) 

we conclude that the ‘true’ curve lies between the green curve ���
���

m

M

xP )(  

(upper bound) and the red curve ���
�����

m

M

xP )(  (lower bound): 

)()()()( xPxPxPxP m

M

m
m

M
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      (4) 
 

Correspondingly, the ‘true’ mean r 2
max lies between the expectations for 

the green (lower bound) and the red curve (upper bo und). 

 

Formula (4) suggests to search for an exponent L with &&'
())*

+
≤≤,-

,./
.

m

M
L

m

M
 such 

that 

)()( xPxP m
L ≈  

 

and that  L = 1 for  m = M. L  is expected to be markedly smaller than 001
2334

5
m

M
 

if there is large overlap in the descriptor sets of  models. 

 

    These considerations are supported by the simul ation results. Thus, 

for the special case m = 1 (all models mutually independent) the 

experimental r 2
max values are well approximated by the expectation of  the 

respective red curve, as seen in the following exam ples (format ( n,1, M), 

mode 4 experimental r 2
max , expectation for red curve): (16,1,53), 0.3822, 
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0.377; (16,1,23), 0.3181, 0.308; (16,1,10), 0.2343,  0.236; (8,1,32), 

0.6117, 0.616. 

    For m > 1, all experimental mean best random r 2 values are between 

the expectations for the respective green and red c urves, see Table 9.  

    Finally, for m = M (no descriptor selection), the red and green 

curves coincide with the black one (inequation (4)) , and in fact in these 

cases the experimental mean best random r 2 values coincide with the 

expectations for the respective black curves (see T able 9). 

 

                              (Table 9) 

 

    Unfortunately, at present there is a large gap between lower and 

upper bounds for mean best random r 2. This is due to the difficulty of 

adequately modeling the intercorrelation of models.  Note, however, that 

even the lower bound is considerably higher than th e expectation for the 

black curve, which is the correct value for cases w ithout descriptor 

selection.  

 

                             DISCUSSION  

    As demonstrated by the examples in section 2, t he phenomenon of 

selection bias, though known for decades, is still widely ignored. In 

original reports on MLR modeling authors often are silent on the 

possibility of chance correlations. Those who do me ntion such a risk 

often do not realize the enhanced risk due to descr iptor selection, and 

accordingly by the tests performed models often dec eptively seem 

significant. Y-randomized procedures are sometimes performed incorrectly, 

i.e. without taking selection bias into account. If  selection bias is 

properly accounted for, that is if descriptor selec tion is included 

independently in each y-scrambled run, then we call  the procedure y-

randomization. It is a useful, though not the best,  tool to protect 

oneself against chance correlation. Comparison of t he fitting performance 

of a QSAR model with the fitting performance of pse udomodels obtained by 

y-randomization (mode 2) is systematically overopti mistic, since the 

hurdle built by y-randomization is systematically l ow. Y-randomization as 

a validation tool therefore should be replaced by m ode 1 (or mode 4 or 5) 

simulations as described herein. Only in the limiti ng case of no 

intercorrelation among M descriptors y-randomization is equivalent to 

these latter simulations. The superiority of mode 1  simulations over y-
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randomization (mode 2) is not surprising since the relevant question to 

be asked is question 1, whereas y-randomization ans wers question 2. 

    While y-randomization requires, along with acti vity data, knowledge 

of numerical values of all M descriptors in the pool and therefore, as a 

rule, is available to the authors of an original mo del only, mode 1 and  

mode 5 simulations can be performed by everyone if activity data and 

numbers n, m, and M are known. Mode 4 simulations yield the same mean 

best random r 2 values as does mode 1, but do not even require kno wledge 

of the original activity data. In fact, mode 4 simu lations answer the 

question how well n random data points would be fitted on average in M LR 

by the best combination of m out of M random pseudodescriptors. 7 Such 

simulations provide insight to judge the statistica l significance of a 

newly proposed MLR model. 

    A factor contributing to the popularity of y-ra ndomization may be the 

scientists’ belief that y-randomization, working on  my response data  

(though scrambled) is more relevant for my problem  than a similar 

procedure working on random number pseudoresponse d ata. Comparison 

between our mode 2 and mode 3 results disproves thi s belief. 

    Similarly, one could believe y-randomization, u sing my descriptor 

values , to be more relevant to my problem  than a similar procedure using 

random number pseudodescriptors. Our experiments (c ompare modes 2 and 5, 

or modes 3 and 4) showed that procedures using the original descriptors 

yield lower random r 2 values than procedures using random number 

pseudodescriptors, and thus are overoptimistic with  respect to the 

significance of the original model. 

    Finally, one could feel experiments on my particular response data  to 

be more relevant than similar experiments on random  number 

pseudoresponse. On the contrary, our experiments sh owed mode 1 and mode 4 

to be numerically equivalent within the limits of r andom scatter and 

therefore equally relevant. 

 

Program availability.  The random simulations were done using an add-on 

“RandomQSPR” to be used in connection with MOLGEN-Q SPR, running on a PC, 

available from M. M. The theoretical calculations a nd illustrations 

(black, green, and red curves and their expectation  values as in Figure 

1) are obtained using an R program written by and a vailable from G. R. 
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39) The English word “selection” means both the pro cedure of selecting 

things and the result of this procedure, i.e. the s et of selected things. 

A phrase such as “using the same descriptor selecti on as in establishing 

the original model”, referring to the procedure, is  therefore easily 

misunderstood to mean the set of selected descripto rs. 
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Table 1.  Experimental mean best random r 2 values and standard deviations  

for the tuple (23,3,18) belonging to data sets 1, 1 A, and 1B. 

 

n    m    M   it     mode 1   mode 2   mode 3   mode 4   mode 5 

 

data set 1 

23   3   18     25  0.4081   0.3290   0.3254   0.43 06   0.4572 

                    0.0930   0.1293   0.0890   0.11 33   0.1048 

23   3   18     25  0.4459   0.2850   0.3270   0.40 16   0.4021 

                    0.0938   0.1135   0.0974   0.06 54   0.0880 

23   3   18     25  0.4280   0.3188   0.3233   0.46 65   0.4485 

                    0.1178   0.1125   0.0943   0.11 42   0.1222 

23   3   18     25  0.4373   0.3205   0.3012   0.41 55   0.4307 

                    0.0956   0.0999   0.0936   0.10 16   0.1335 

23   3   18    250  0.4352   0.3194   0.3166   0.44 06   0.4159 

                    0.1041   0.1368   0.1006   0.10 66   0.1047 

23   3   18   2500  0.4280   0.3185   0.3158   0.43 35   0.4299 

                    0.1054   0.1250   0.1089   0.10 87   0.1040 

23   3   18  25000  0.4291   0.3181   0.3147   0.43 23   0.4312 

                    0.1048   0.1264   0.1099   0.10 83   0.1058 

 

data set 1A 

23   3   18   2500  0.4291   0.2951   0.2919   0.43 11   0.4334 

                    0.1079   0.1228   0.1094   0.10 79   0.1055 

 

data set 1B 

23   3   18   2500  0.4278   0.4294   0.4305   0.43 28   0.4298 

                    0.1060   0.1052   0.1093   0.11 01   0.1054 

 

For comparison, r 2 of the original model is 0.846. 



 29

Table 2.  Experimental mean best random r 2 values and standard deviations  

for ( n, m, M)-tuples belonging to data set 2; it  = 250 throughout. For 

comparison, in the last column r 2 of the original models are given.  

 

n    m    M         mode 1   mode 2   mode 3   mode 4   mode 5  origin al 

                                                                   r 2 

 

16   1   53         0.3770   0.3052   0.3043   0.38 22   0.3803  (0.49) 

                    0.0985   0.1017   0.0956   0.09 78   0.1008 

16   2   53         0.6223   0.5287   0.5192   0.62 42   0.6201  (0.74) 

                    0.0847   0.1110   0.1073   0.09 40   0.0940 

16   3   53         0.7885   0.6756   0.6730   0.78 99   0.7866  (0.81) 

                    0.0586   0.1008   0.0970   0.06 35   0.0663 

 

 

16   1   23         0.3094   0.2980   0.2819   0.31 81   0.3183   0.49 

                    0.1053   0.1161   0.0984   0.11 06   0.1046 

16   2   23         0.5077   0.4710   0.4785   0.50 38   0.5047   0.74 

                    0.1112   0.1143   0.1127   0.12 08   0.1170 

16   3   23         0.6445   0.6230   0.6184   0.63 78   0.6480   0.81 

                    0.1118   0.1136   0.1088   0.10 85   0.1079 

 

 

16   1   10         0.2374   0.2271   0.2204   0.23 43   0.2404 

                    0.1130   0.0945   0.0973   0.10 79   0.1125 

16   2   10         0.3694   0.3789   0.3592   0.38 10   0.3777 

                    0.1170   0.1288   0.1316   0.13 90   0.1367 

16   3   10         0.4745   0.4624   0.4589   0.48 27   0.4676 

                    0.1446   0.1327   0.1416   0.14 07   0.1355 
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Table 3.  Experimental mean best random r 2 values and standard deviations  

for ( n, m, M)-tuples belonging to data set 3; it  = 25 throughout. For 

comparison, in the last column r 2 of the original models are given.  

 

 

n    m    M         mode 1   mode 2   mode 3   mode 4  mode 5  origina l 

                                                                  r 2 

48   3   158        0.4158   0.2909   0.2655   0.41 20  0.4171   0.608 

                    0.0537   0.0831   0.0662   0.06 40  0.0659 

48   4   158        0.4866   0.3472   0.3620   0.49 95  0.5011   0.682 

                    0.0411   0.0694   0.0893   0.04 81  0.0526 

48   5   158        0.5598   0.3876   0.3993   0.58 14  0.5833   0.667 

                    0.0447   0.0756   0.1049   0.04 91  0.0487 

48   6   158        0.6465   0.4447   0.4490   0.67 24  0.6676   0.752 

                    0.0469   0.0921   0.0926   0.05 26  0.0435 

48   7   158        0.7188   0.4586   0.4860   0.71 59  0.7148   0.778 

                    0.0441   0.0812   0.0764   0.04 36  0.0366 

 

 

32   3   158        0.5905   0.3663   0.3879   0.58 91  0.5924 

                    0.0518   0.0841   0.0691   0.06 58  0.0522 

32   4   158        0.6834   0.4596   0.4707   0.68 97  0.6844 

                    0.0408   0.0852   0.1135   0.05 56  0.0458 

32   5   158        0.7722   0.5767   0.5453   0.78 62  0.7866 

                    0.0265   0.0761   0.1135   0.03 64  0.0507 

32   6   158        0.8418   0.6047   0.6117   0.84 69  0.8418 

                    0.0219   0.1038   0.0917   0.02 98  0.0353 

32   7   158        0.8975   0.6360   0.6776   0.89 11  0.8875 

                    0.0214   0.0917   0.0845   0.02 28  0.0145 
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Table 4.  Experimental mean best random r 2 values and standard deviations  

for ( n, m, M)-tuples belonging to data sets 4 – 7; it  = 25 throughout. For 

comparison, in the last column r 2 of the original models are given.  

 

 

n    m    M         mode 1   mode 2   mode 3   mode 4  mode 5   origin al 

                                                                   r 2 

 

data set 4 

144  10  230        0.3826   0.3060   0.2865   0.38 39  0.3899    0.7938  

                    0.0348   0.0430   0.0395   0.04 31  0.0356 

129  10  230        0.4358   0.3223   0.3276   0.43 08  0.4403    0.7909 

                    0.0316   0.0458   0.0533   0.03 66  0.0333 

 

 

data set 5 

150  14  229        0.4524   0.3506   0.3434   0.46 07  0.4653    0.6487 

                    0.0400   0.0457   0.0336   0.02 71  0.0335 

 

 

data set 6 

507  6   249        0.0799   0.0542   0.0552   0.07 98  0.0775    0.9879 

                    0.0137   0.0103   0.0112   0.01 10  0.0130 

507  7   249        0.0876   0.0599   0.0624   0.09 15  0.0882    0.9888 

                    0.0107   0.0095   0.0125   0.01 20  0.0081 

 

 

data set 7 

82   6   209        0.4168   0.2835   0.2753   0.44 00  0.4335   0.9845 

                    0.0369   0.0529   0.0688   0.03 20  0.0364 

82   7   209        0.4745   0.2977   0.2929   0.48 59  0.4773   0.9872 

                    0.0386   0.0386   0.0491   0.04 09  0.0321 
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Table 5.  Experimental mean best random r 2 values and standard deviations  

for ( n, m, M)-tuples belonging to data sets 8 and 9; it  = 250 throughout. 

For comparison, in the last column r 2 of the original models are given.  

 

 

n    m    M         mode 1   mode 2   mode 3   mode 4  mode 5   origin al 

                                                                   r 2 

 

data set 8 

24   4   14 a        0.4358  (0.3070) (0.3083)  0.4251  0.4255    0.909 

                    0.1158  (0.1308) (0.1252)  0.11 04  0.1019 

24   4   14 b        0.4254  (0.4297) (0.4204)  0.4291  0.4350 

                    0.1168  (0.1142) (0.1217)  0.11 45  0.1087 

27   4   14        0.3841       -        -    0.383 6  0.3856    (0.661) 

                   0.1007                     0.111 8  0.1060 

27   4   25        0.4889       -        -    0.502 8  0.5016    (0.661) 

                   0.0879                     0.096 0  0.0964 

 

data set 9 

15   3   14 c        0.5767  (0.4211) (0.4191)  0.5660  0.5783    0.885 

                    0.1222  (0.1590) (0.1561)  0.14 07  0.1347 

15   3   14 d        0.5634  (0.5855) (0.5857)  0.5727  0.5763 

                    0.1277  (0.1248) (0.1271)  0.12 87  0.1280 

17   3   14        0.5270      -       -      0.501 8  0.5134    (0.777) 

                   0.1333                     0.136 8  0.1342 

17   3   25        0.6377      -       -      0.635 0  0.6415    (0.777) 

                   0.0982                     0.101 9  0.0929 

 
a4 original descriptors and 10 highly intercorrelate d topological indices 
b4 original descriptors and 10 random pseudodescript ors 
c3 original descriptors and 11 highly intercorrelate d topological indices 
d3 original descriptors and 11 random pseudodescript ors 
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Table 6.  Experimental mean best random r 2 values and standard deviations  

for ( n, m, M)-tuples belonging to data set 10. For comparison, in the last 

column r 2 of the original models are given.  

 

 

n    m    M    it   mode 1   mode 2   mode 3   mode 4  mode 5  origina l 

                                                                  r 2 

 

50   3    34  250   0.2607     -        -      0.25 39  0.2567   0.603 

                    0.0546                     0.06 33  0.0612 

50   4    34  250   0.3210     -        -      0.32 04  0.3107   0.651 

                    0.0684                     0.07 40  0.0647 

50   6    34  250   0.3999     -        -      0.40 04  0.3961   0.732 

                    0.0727                     0.07 14  0.0773 

 

50   4    10  250   0.1644     -        -      0.16 34  0.1669 

                    0.0726                     0.07 06  0.0712 

 

 

60   7  1627   25   0.8188 a     -        -      0.8181 0.8146   0.820 

                    0.0183 a                     0.0172 0.0176 

 

60   7   888   25   0.7772     -        -      0.77 33  0.7684   0.795 

                    0.0245                     0.02 07  0.0221 

 

60   7   739   25   0.7635     -        -      0.75 60  0.7641   0.731 

                    0.0244                     0.02 34  0.0268 

 

50   6  1627   25   0.8350     -        -      0.83 19  0.8335   0.809 

                    0.0157                     0.02 33  0.0151 

 

 

 
aAnother series ( it  = 50) yielded 0.8128, standard deviation 0.0151 . 
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Table 7.  Experimental mean best random r 2 values and standard deviations  

for the ( n, m, M)-tuples belonging to data sets 11 - 16; it  = 250. For 

comparison, in the last column r 2 of the original models are given.  

 

 

n    m    M         mode 1   mode 2   mode 3   mode 4  mode 5  origina l 

                                                                  r 2 

data set 11 

16   3   33         0.7079     -        -      0.71 91  0.7156   0.689 

                    0.0808                     0.08 62  0.0862 

 

data set 12 

16   3   32         0.7051     -        -      0.72 34  0.7150   0.808 

                    0.0852                     0.08 81  0.0910 

 

data set 13 

15   3   32         0.7443     -        -      0.74 25  0.7555   0.750 

                    0.0810                     0.08 32  0.0756 

 

data set 14 

 8   1   32         0.5838     -        -      0.61 17  0.5840   0.738 

                    0.1289                     0.12 58  0.1368 

 

data set 15 

11   2   96         0.8644     -        -      0.86 65  0.8690   0.748 

                    0.0490                     0.04 62  0.0480 

 

data set 16 

11   2   96         0.8482     -        -      0.85 71  0.8503   0.733 

                    0.0491                     0.04 86  0.0474 
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Table 8.  Experimental r 2 values resulting from 25 random permutations of 

the y data from data set 4 ( n = 144, m = 10, M = 230), obtained by three 

different procedures, see text. Descriptors from th e original pool were 

used throughout. 

 

Random   procedure 1  procedure 2  procedure 3 

perm.#         r 2          r 2          r 2 

 1         1.3·10 -6      0.03928      0.27218 

 2         0.000278    0.04321      0.28787 

 3         0.016110    0.07762      0.25008 

 4         0.000655    0.04064      0.29090 

 5         2.3·10 -6      0.03338      0.18901 

 6         0.007169    0.08658      0.24169 

 7         0.003548    0.06098      0.23121 

 8         0.005697    0.08419      0.34817 

 9         0.000112    0.03501      0.23710 

10         0.000421    0.05125      0.26548 

11         0.011629    0.04340      0.33335 

12         0.000138    0.07839      0.30173 

13         0.035908    0.14101      0.40248 

14         0.000140    0.07086      0.30109 

15         0.006059    0.04560      0.34036 

16         0.000812    0.06508      0.29116 

17         0.000121    0.02604      0.35956 

18         0.015730    0.14601      0.33755 

19         0.001700    0.02935      0.32174 

20         0.000959    0.01173      0.22231 

21         0.000183    0.04899      0.27195 

22         0.003260    0.04598      0.29894 

23         0.004392    0.03789      0.31779 

24         0.004043    0.09496      0.28999 

25         0.001930    0.05744      0.26652 

 

mean       0.004840    0.05980      0.29081 

st.dev.    0.007996    0.03258      0.04849 
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Table 9.  Comparision of random r 2 for cases without (left, M = m) and 

with descriptor selection (right), for some ( n, m, M) tuples. Along with 

mode 4 experimental values the expectations for the  black, green and red 

curves (Figure 1 type illustrations) are given. 

 

           Without descriptor selection   With desc riptor selection 
                     ( n, m, m)                       ( n, m, M)  
             black curve    experiment   green curve experiment  red curve 
n    m    M  expectation    (mode 4) a  expectation  (mode 4) b  expectation 
data set 1 

23   3   18     0.136       0.1348       0.278      0.4323     0.580 

 

data set 2 

16   3   53     0.200       0.1981       0.494      0.7899     0.853 

 

data set 3 

48   7  158     0.149       0.1485       0.311      0.7159     0.811 

32   7  158     0.226       0.2267       0.449      0.8911     0.933 

 

data set 4 

144 10  230     0.070       0.0696       0.139      0.3839     0.519 c 

129 10  230     0.078       0.0783       0.154      0.4308     0.560 c 

 

data set 5 

150 14  229     0.094       0.0936       0.161      0.4607     0.543 c 

 

data set 6 

507  7  249     0.014       0.0137       0.034      0.0915     0.143 

 

data set 7 

82   7  209     0.086       0.0862       0.195      0.4859     0.623 

 

data set 8 

24   4  14      0.174       0.1722       0.268      0.4251     0.626 

 

data set 9 

15   3  14      0.214       0.2169       0.375      0.5660     0.732 
ait  = 2500. bFrom Tables 1-5. cThis number may suffer from numerical 

problems due to the high value of the binomial coef ficient. 
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Table and Figure Captions 

 

Table 1.  Experimental mean best random r 2 values and standard deviations  

for the tuple (23,3,18) belonging to data sets 1, 1 A, and 1B. 

 

Table 2.  Experimental mean best random r 2 values and standard deviations  

for ( n, m, M)-tuples belonging to data set 2; it  = 250 throughout. For 

comparison, in the last column r 2 of the original models are given.  

 

Table 3.  Experimental mean best random r 2 values and standard deviations  

for ( n, m, M)-tuples belonging to data set 3; it  = 25 throughout. For 

comparison, in the last column r 2 of the original models are given.  

 

Table 4.  Experimental mean best random r 2 values and standard deviations  

for ( n, m, M)-tuples belonging to data sets 4 – 7; it  = 25 throughout. For 

comparison, in the last column r 2 of the original models are given.  

 

Table 5.  Experimental mean best random r 2 values and standard deviations  

for ( n, m, M)-tuples belonging to data sets 8 and 9; it  = 250 throughout. 

For comparison, in the last column r 2 of the original models are given.  

 

Table 6.  Experimental mean best random r 2 values and standard deviations  

for ( n, m, M)-tuples belonging to data set 10. For comparison, in the last 

column r 2 of the original models are given.  

 

Table 7.  Experimental mean best random r 2 values and standard deviations  

for the ( n, m, M)-tuples belonging to data sets 11 - 16; it  = 250. For 

comparison, in the last column r 2 of the original models are given.  

 

Table 8.  Experimental r 2 values resulting from 25 random permutations of 

the y data from data set 4 ( n = 144, m = 10, M = 230), obtained by three 

different procedures, see text. Descriptors from th e original pool were 

used throughout. 

 

Table 9.  Comparision of random r 2 for cases without (left, M = m) and 

with descriptor selection (right), for some ( n, m, M) tuples. Along with 

mode 4 experimental values the expectations for the  black, green and red 

curves (Figure 1 type illustrations) are given. 
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Figure 1.  Distribution functions of random r 2 values for the case 

(16,3,53). Black: Models containing three descripto rs not selected from a 

larger pool. Green and red: Upper and lower bound c urves for models 

containing three descriptors selected as best from a pool of 53 (see 

text). Short colored lines indicate the expectation  of the respective 

curve. The experimental mean best random r 2 (0.7899) is indicated by a 

blue line. 


