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ABSTRACT

The construction of complete lists of regular graphs up to isomorphism is one of the
oldest problems in constructive combinatorics. In this paper an efficient algorithm to
generate regular graphs with given number of vertices and vertex degree is introduced.
The method is based on orderly generation refined by criteria to avoid isomorphism
checking and combined with a fast test for canonicity. The implementation allows to
compute even large classes of graphs, like construction of the 4-regular graphs on 18
vertices and, for the first time, the 5-regular graphs on 16 vertices. Also in cases with
given girth some remarkable results are obtained. For instance the 5-regular graphs with
girth 5 and minimal number of vertices were generated in less than one hour. There
exist exactly four (5,5)-cages.

1 INTRODUCTION

Let Gn denote the set of simple labeled graphs with vertex set {1, ..., n}. The subset
of k-regular graphs, i.e. those graphs where each vertex has degree exactly k, is called
Rn,k. Γ ∈ Gn is described by the set of its edges:

Γ = {e1, ..., et} ⊆
({1, ..., n}

2

)
=: Xn

If e = (v, w) ∈ Xn denotes an edge, always v < w is assumed. The symmetric group Sn

acts on Xn and therefore induces actions on Gn and Rn,k. Sn\\Gn and Sn\\Rn,k denote
the orbits of these actions. By definition two labeled graphs are isomorphic if and only
if they belong to the same orbit. Our aim is to compute a set of orbit representatives of
Sn\\Rn,k (cf. [10]).
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2 ORDERLY GENERATION

To find a set of orbit representatives Read’s technique of orderly generation [13] is used.
Xn is ordered in the following way: For e = (v, w), e′ = (v′, w′) ∈ Xn we define

e < e′ :⇐⇒ v < v′ ∨ (v = v′ ∧ w < w′).

This induces a lexicographic order on Gn: Let Γ, Γ′ ∈ Gn with Γ = {e1, ..., et}, Γ′ =
{e′1, ..., e′t′}, and e1 < ... < et , e′1 < ... < e′t′ . Then

Γ < Γ′ :⇐⇒ (∃i ≤ min{t, t′} : ej = e′j∀j < i ∧ ei < e′i)

∨(t < t′ ∧ ej = e′j∀j ≤ t)

The canonical orbit representatives are defined to be minimal in their orbit:

rep<(Sn\\Gn) := {Γ ∈ Gn | ∀π ∈ Sn : Γ ≤ Γπ},
rep<(Sn\\Rn,k) := {Γ ∈ Rn,k | ∀π ∈ Sn : Γ ≤ Γπ}.

The following theorem [9] provides the key for the computation of the minimal orbit
representatives:

2.1 Theorem:
If Γ ∈ rep<(Sn\\Gn) each Γ1 ⊂ Γ with Γ1 < Γ fulfills Γ1 ∈ rep<(Sn\\Gn).

Proof: Let Γ = Γ1 ∪ Γ2 and Γ1 /∈ rep<(Sn\\Gn) and Γ1 < Γ. Then Γπ
1 < Γ1 for some

π ∈ Sn. Let Γπ
1 = {e1, ..., et}, e1 < ... < et and Γ1 = {e′1, ..., e′t}, e′1 < ... < e′t. By

Γπ
1 < Γ1 exists i := min{j | ej < e′j}. Now Γπ = Γπ

1 ∪ Γπ
2 ⊇ {e1, ..., ei}, and Γπ < Γ1 < Γ.

This is a contradiction to the minimality of Γ. 2

2.2 Algorithm:
Based on theorem 2.1 we can formulate a simple backtracking algorithm to compute
rep<(Sn\\Rn,k) starting with Ordrek({(1,2)}). Ordrek is defined as follows:

Ordrek(Γ)

1. Check, whether Γ can be extended to a k-regular Graph on n vertices, if not:
return;

2. Check, if Γ ∈ rep<(Sn\\Gn), if not: return;

3. If Γ ∈ Rn,k: add Γ to the output; return;

4. For each e ∈ Xn with e > max{e′ ∈ Γ} call Ordrek(Γ ∪ {e}) with increasing e;
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An element ofRn,k is only constructed if Γ contains exactly nk
2

edges. At the intermediate
stages we just have Γ ∈ Gn. Of course any vertex should have degree at most k. Further
necessary conditions for step 1 can be obtained by taking row and column sums of the
adjacency matrix into account (cf. [12]). Indeed there seems to be no necessary and
sufficient criterion to decide at any stage whether Γ can become an element of Rn,k by
inserting further edges, that is easy to check.

The most time consuming part is step 2: the minimality testing procedure. From
the naive point of view one has to look at any permutation of Sn. Although algebraic
and combinatorial methods are used to increase the efficiency, such a test remains quite
expensive. For this reason it should be avoided as often as possible. The algorithm
checks minimality after each insertion of a new edge. This means that graphs, which are
at last added to the output had to pass the minimality test several times. On the other
hand minimality tests for graphs that can not be completed to regular graphs should be
omitted. It turned out to be more efficient to check minimality only when an element
of Rn,k is computed. Unfortunately then the set of candidates for the minimality test
grew much faster than the number of minimal orbit representatives. Our further efforts
have the aim to reduce this set of candidates.

2.3 Definition:
For Γ ∈ Gn and 1 ≤ i < n let Γi := {e = (v, w) ∈ Γ | v = i},

C1 := {π ∈ Sn | π(1) = 1},
Ni := {π ∈ Ci | Γi

π = Γi}, and

Ci+1 := {π ∈ Ni | π(i + 1) = i + 1}.
By Definition Γ =

⋃n−1
i=1 Γi, Γi ∩ Γj = ∅ (i 6= j) and with 1 ≤ i < j < n:

e ∈ Γi, e′ ∈ Γj ⇒ e < e′. The following lemma shows a necessary criterion for Γ ∈ Gn

being minimal. It is applied after every insertion of a new edge at step 4.

2.4 Lemma (R. Grund):
For Γ ∈ rep<(Sn\\Gn) we have

∀i < n : ∀π ∈ Ci : Γi ≤ Γi
π. (∗)

Proof: Let i0 be the smallest i that does not fulfill (∗), i.e. ∃τ ∈ Ci0 : Γi0
τ < Γi0 . Because

of Ci0 ≤ Nj ∀j < i0 we have Γj
τ = Γj ∀j < i0. Therefore Γτ < Γ, a contradiction to the

minimality of Γ. 2

Graphs with the property (∗) are called semicanonic in the sense of [6]. As each group Ci

and Ni is a Young subgroup of Sn these groups are easy to compute and semicanonicity
can be achieved during insertion of the edges (cf. [5]). A further reduction of the
candidate set based on a specific property of the chosen canonical form is obtained by

2.5 Lemma (G. Brinkmann):
If Γ ∈ rep<(Sn\\Rn,k) then there exists a cycle of minimal length in Γ containing vertices
1, 2 and 3.
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Figure 1: Semicanonical graphs where Lemma 2.5 can be applied.

A proof can be found in [1], where also the construction of such a cycle and the
application of the lemma is described. For instance Figure 1 shows two semicanonical
graphs on 6 vertices. By Lemma 2.5 nonminimality is detected and the minimality tests
can be avoided. This criterion is most effective in the case of cubic graphs and becomes
less important for higher degree (e.g. reduction of candidate set for n = 18, k = 3 by
factor 10, for n = 14, k = 4 by factor 4). Main reason for this behaviour is the ratio of
small cycles which is increased with the maximal possible degree.

As the girth is an important invariant of a regular graph and many graphtheoretic
questions about regular graphs require a certain minimal girth, it can be important to
be able to construct only k-regular graphs with a fixed lower bound g of the girth. To
be able to apply Lemma 2.5 we have to know the girth of the graph under consideration
at any stage of the computation. Obviously by inserting further edges the girth cannot
be increased. Once a graph with girth less than g is obtained, one can backtrack. This
simple consideration shows a very straightforward way to construct only k-regular graphs
with girth at least g.

3 TEST FOR MINIMALITY

This test has to decide whether a given Γ ∈ Rn,k fulfills

Γ ≤ Γπ ∀π ∈ Sn.

The centralizer of 1, ..., i is

Ui := {π ∈ Sn | π(1) = 1, ..., π(i) = i}.

We have the following chain of subgroups (Sims chain, [14],[11]):

Sn =: U0 ≥ U1 ≥ U2 ≥ ... ≥ Un−1 = (id).
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Now we consider each of these subgroups as a disjoint union of left cosets:

Ui−1 =
n⋃

j=i

(i, j)Ui, i = 1, ..., n− 1.

The transpositions (i, j) are representatives of left cosets; (i, i) denotes the identity. Any
π ∈ Sn can be written in exactly one way as a product of such transpositions:

π =
n−1∏

i=1

(i, ji), i ≤ ji ≤ n, 1 ≤ i < n.

3.1 Algorithm:
Now you can run through Sn as follows: Start at the smallest centralizer Un−1 then run
through the difference Un−2 − Un−1. When all elements of Un−2 are visited you can go
on with Un−3 − Un−2 ...

Naivetest(Γ)
Run through Sn in the way described above. Decide, whether

Γ ≤ Γ(1,j1)(2,j2)...(n−1,jn−1), i ≤ ji ≤ n, 1 ≤ i < n,

if not: return (not minimal);

We still have to consider any permutation of Sn. A first improvement is achieved by

3.2 Lemma (R. Grund):
For j > i let π ∈ Ui be the first permutation found when running through (i, j)Ui with
Γ(i,j)π = Γ. Then Γ ≤ Γ(i,j)σ ∀σ ∈ Ui.

Proof: We have Γτ ≥ Γ ∀τ ∈ Ui (by definition of naivetest). Then for σ ∈ Ui we obtain
Γ(i,j)σ = Γπ−1σ ≥ Γ. 2

The remaining elements of (i, j)Ui may be neglected and testing is continued at the
next coset. This way we get a Sims chain of the automorphism group of the graph,
supposed it is a minimal orbit representative. This is an important feature, if we use the
graphs as input for further construction algorithms like the one introduced in [7] and
[8]. For further refinements to the minimal testing procedure see [6] and [12].

Even if the candidate is not minimal, you gain valuable information: A necessary
condition for the canonicity of the lexicographic successors.
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3.3 Lemma (R. Grund):
Let Γ ∈ Gn be not minimal, Γ = {e1, ..., et} with e1 < e2 < ... < et.
Then there exists π ∈ Sn and i < t with Γ > Γπ = {e1, ..., ei, e

′
i+1, ..., e

′
t} and ei+1 > e′i+1.

Let {eπ−1

1 , ..., eπ−1

i , e′π
−1

i+1 } = {ej1 , ..., eji+1
} with 1 ≤ jl ≤ t for l = 1, ..., i + 1.

Let r := max{j1, ..., ji+1, i + 1}, then each Γ̃ ∈ Gn with Γ̃ = {e1, ..., er, ẽr+1, ..., ẽs},
e1 < ... < er < ẽr+1 < ... < ẽs is also not minimal.

Proof: By r ≥ i + 1 we have Γ̃ = {e1, ..., ei, ei+1, ..., er, ẽr+1, ..., ẽs}.
Further Γ̃π = {eπ

1 , ..., e
π
r , ẽπ

r+1, ..., ẽ
π
s} ⊇ {eπ

j1
, ..., eπ

ji+1
} = {e1, ..., ei, e

′
i+1}

=⇒ Γ̃π < Γ̃ by e′i+1 < ei+1. 2

This means: If a non-minimal candidate was tested, determine r as in the lemma
above and return to the last stage of the backtracking algorithm with er /∈ Γ.

4 RESULTS

The introduced methods are implemented in C. The program genreg is designed for
UNIX machines, but also runs on PC’s with DOS or WINDOWS. A manual for the
program, the source code and the executables are available via http://www.mathe2.uni-
bayreuth.de/markus/reggraphs.html. From this site you can even download various lists
and some drawings of regular graphs.

Table 1 shows results of the program for runs with given number n of vertices and
degree k. It contains the number of computed regular graphs, the total number of
candidates for the minimality test, the quotient of these two numbers and the CPU-times
for computation on a PC Pentium Pro with 200 MHz. Some numbers were formerly
unpublished and the content exceeds similar tables as e.g. in [4].

Results for the cases with prescribed girth larger than 3 and numbers of bipartite
regular graphs are collected in Tables 2-5. In these tables no CPU-times are given, be-
cause some of the computations were done in several runs on different machines. Blanks
in the tables mean that the corresponding numbers are not yet known. Corresponding
numbers of cubic graphs can be found in [1].

The smallest k-regular graphs with girth g are called (k, g)-cages. The (5, 5)-cages
have 30 vertices and there exist exactly four of them (see Table 4). This was first
claimed by Yang and Zhang [16] in 1989. The construction of these four graphs takes
41 minutes on the PC described above. The upper left of the (5,5)-cages in Fig-
ure 2 is neither mentioned in [15] nor in [3]. It has an automorphism group of or-
der 96 and two orbits of length 6 and 24. The other (5,5)-cages (upper right/lower
left/lower right) have automorphism groups of order 30/20/120 and 2/4/2 orbits of
length 15,15/5,5,10,10/10,20. Further information can be found in Gordon Royle’s cat-
alog of cages at http://www.cs.uwa.edu.au:80/gordon/cages/allcages.html.
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Figure 2: The four (5,5)-cages.

It turned out, that graph generators like the introduced one are an important tool
to confirm or disprove graph-theoretical conjectures (cf. [2], [17]). Everyone who has an
open question on regular graphs is encouraged to contact the author in order to decide
whether the solution is in reach of the generator.
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